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Abstract- This paper conducts a thorough analysis and experimental evaluation of zero-shot 

capabilities in vision-language models (VLMs), concentrating on three distinct approaches: 

contrastive learning, masked learning, and generative modeling, exemplified by CLIP, FLAVA, 

and CoCa, respectively. CLIP uses contrastive learning to align images and text robustly, FLAVA 

employs masked learning to improve multimodal reasoning, and CoCa combines generative 

captioning with contrastive learning for fine-grained multimodal comprehension. Zero-shot 

learning, a pivotal AI capability, allows models to apply knowledge to new tasks without further 

training specific to those tasks. The performance of these models is tested through experiments in 

zero-shot settings, including image classification on datasets like CIFAR-100, Flowers102, and 

Food101, to evaluate generalization to new image categories. Furthermore, zero-shot image and 

text retrieval tasks are performed using Flickr30k and MSCOCO benchmarks to measure the 

models' ability to align and retrieve across modalities without direct supervision. Results from 

these tests provide a comprehensive look at the VLMs' zero-shot performance, highlighting their 

potential and limitations in real-world applications on unseen data. 
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INTRODUCTION 

Recent advancements in the field of language modeling have led to significant achievements, 

particularly with the development of Large Language Models (LLMs) such as Llama and 

ChatGPT[1]. Historically focused on processing and generating text, these models are now 

evolving due to efforts to expand their capabilities to include visual inputs, thus enabling the 

integration of textual and visual data. Vision-Language Models (VLMs) represent a powerful 

advancement in this domain, utilizing large-scale datasets and diverse methodologies to learn 

representations that effectively bridge the gap between images and text. These models are adept at 
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performing various downstream tasks like image captioning, image-text retrieval, and visual 

question answering with notable accuracy[2], underscoring their utility in multimodal learning. 

Despite the successes, a significant challenge in VLM development is their ability to generalize to 

new tasks or data specifically through zero-shot learning. Zero-shot learning capabilities enable 

VLMs to perform tasks or make predictions about data or classes not previously encountered 

during their training[3]. This capability is paramount for creating versatile and robust AI systems, 

especially in real-world applications where models must adapt to a wide range of scenarios without 

needing specific fine-tuning. Exploring and enhancing the zero-shot learning abilities of VLMs 

remain a critical focus for researchers aiming to extend the models' applicability and 

functionality[4]. Research Content of This Paper: This paper aims to scrutinize the zero-shot 

capabilities of three distinct VLMs: CLIP, FLAVA, and CoCa. Each model embodies a unique 

approach to learning multimodal representations CLIP leverages contrastive learning, FLAVA 

utilizes masked learning techniques, and CoCa combines generative with contrastive methods. By 

conducting experiments focused on zero-shot image classification and zero-shot image and text 

retrieval, this study will provide a comprehensive analysis of these models' performance in zero-

shot scenarios[5]. The findings from these experiments will illuminate the strengths and limitations 

of current VLMs in handling zero-shot tasks, pointing to potential avenues for future research and 

enhancements. This comparative analysis intends to contribute significantly to the development of 

more generalizable and adaptable AI systems, suitable for complex real-world applications[6]. 

 

VISION-LANGUAGE MODEL 

(i) Contrastive learning-based vision-language models- One of the first explored initiatives for 

VLMs is Contrastive learning, and the core idea behind it is, as the name suggests, to train models 

to produce similar representations for matching (positive) pairs and different representations for 

mismatching (negative) pairs[7]. This is done by maximizing the similarity between paired 

examples, which in this cases would be an image-caption pair, and minimizing the similarity 

between mismatched pairs, which is implemented using infoNCE contrastive loss introduced by 

Oord in 2018 such that[8]: 

 
 

The InfoNCE loss equation utilizes a softmax and a temperature parameter to optimize the 

similarity between matching pairs while reducing the similarity of all other unmatching pairs in 

the batch. Contrastive learning is essential to zero-shot capability because it enables models to 

learn generalized and robust representations by aligning semantically similar pairs while 

distinguishing them from dissimilar pairs in a shared embedding space. This process allows the 

model to understand the underlying connections between different modalities, which is crucial for 

effectively transferring knowledge to unseen tasks or classes without requiring additional task or 

dataset specific training[9]. 
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(ii) Masked learning-based vision-language models- Masked learning has become increasingly 

prevalent in vision-language models (VLMs) for its effectiveness in improving model robustness 

and learning strong visual representations[10]. The central concept behind this approach is to mask 

certain portions of the input data and train the model to predict the patched information. On the 

textual side, Masked learning strategies have been popularized by BERT model due to its 

accomplishment in natural language processing tasks, where Masked Language Modeling (MLM) 

is used to predict masked word tokens in a sentence leveraging the surrounding context[11]. The 

approach has been extended to the visual domain through Masked Image Modeling (MIM), which 

involve masking areas of an image and optimizing the model to reconstruct missing parts through 

the unmasked patches. An examples of a VLM with masking objective is FLAVA (Foundational 

Language and Vision Alignment), which employs masked learning strategies to reach state-of-the-

art performance across a broad spectrum of tasks. FLAVA integrates multiple masking 

objectives[12], including Masked Multimodal Modeling (MMM), Masked Image Modeling 

(MIM), and Masked Language Modeling (MLM), into a unified framework. This approach allows 

FLAVA to learn strong, shared representations of both images and text, making it highly effective 

for tasks across different modalities. 

(iii) Generative-based VLMs- Generative-based VLMs offer a distinct paradigm compared to 

contrastive or masked learning approaches, focusing on the generation of new content, in the form 

of text or images, rather than aligning existing data[13]. These models focus on generating 

complete text or image outputs based on learned representations, enabling advanced tasks 

including image captioning, text to image synthesis, and more complex vision-language 

understanding. One prominent example of generative-based VLMs is the Contrastive Captioner 

(CoCa) model. CoCa is designed to integrate contrastive learning with generative modeling in a 

single architecture[14], combining the strengths of both approaches. CoCa employs a dual-

objective training method, where it learns to align image and text embeddings through contrastive 

loss while simultaneously generating contextually appropriate textual descriptions through a 

generative captioning loss. This dual objectives allows CoCa to excel in both alignment tasks, like 

image-text retrieval, and generation tasks, such as image captioning. 

 
CoCa’s ability to generate and align multimodal data makes it a versatile model equipped to handle 

a wide variety of vision-language tasks with minimal adaptation. CoCa is pretrained on two large-

scale datasets, the ALIGN dataset and JFT-3B, that include both annotated images with noisy 

labels and images with alt text. The model is trained by treating all labels as text, which enables 

the model to learn from a diverse and noisy dataset. By leveraging large-scale datasets and 

combining different training objectives, the model exhibits state-of-art performance across various 

vision-language tasks, namely zero-shot image classification, image-text retrieval, and visual 

question answering (VQA)[5]. 
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EXPERIMENTS AND RESULTS 

The setup and results obtained from evaluating three Vision Language Models (VLMs): CLIP, 

FLAVA, and CoCa. The evaluation consisted of three categories of downstream tasks: image 

classification, image to text retrieval, and text to image retrieval. Also, all experiment are 

conducted under zero-shot scenarios, meaning that no further fine-tuning or specific training is 

done to enhance the models’ performance in these tasks. 

(i) Datasets and model setup- To evaluate the zero-shot capabilities of the VLMs, a diverse set 

of datasets was selected, covering various domains and categories: Image Classification: Zero-

Shot image classification were conducted on CIFAR-100, CIFAR-10, MNIST, Fashion-MNIST, 

Flowers102, and Food101[16]. These datasets were selected to cover a broad range of image 

classification challenges, from simple digit recognition (MNIST) to complex and diverse food and 

flower categories (Food101, Flowers102). Image-Text Retrieval: The Flickr30K and MSCOCO 

datasets were used for text and image retrieval tasks, as they are very common and effective 

benchmarks for retrieval tasks. As shown in Table 1. 

 

 
Table 1- Zero-shot performance on Flickr30K and MSCOCO datasets (1K test set)[17] 

 

(ii) Zero-shot image-text retrieval- The image-text retrieval task under zero-shot scenario was 

conducted following the setup described in the CLIP paper. First, the images and captions are 

preprocessed and passed through the model's encoders to extract their respective features, image 

or text. These features are then normalized, and went through a dot product operation to obtain in 

cosine similarity scores. Finally, the caption (or image) with the highest similarity score is 

retrieved. Table 1 illustrates all the experiment results for this task[17].  

 

 
Table 2- Zero-shot classification performance on Cifar-100, Cifar-10, MNIST, Fashion-

MNIST, Flowers102, and Food101 (1K test set)[13] 
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(iii) Zero-shot image classification- The image classification task is also done following the CLIP 

paper in a similar fashion: the class labels of the corresponding dataset are tokenized and passed 

through the encoder to extract text feature for each class. These text features are then used to 

calculate cosine similarity in conjunction with the image embedding, and the class label that has 

the highest similarity score is predicted. The classification results are presented in Table 2[18]. 

 

LIMITATION AND BIAS 

Although the experiments carried out in this paper provide valuable insights into the zero-shot 

capabilities of the three VLMs, several limitations and potential biases must be acknowledged. (i) 

Model Configuration- One significant limitation is the use of the ViT-B/32 model configuration 

instead of the more advanced configuration like ViT-L/14. While computationally efficient, the 

ViT-B/32 model has a much smaller number of parameters and a lower capacity compared to ViT-

L/14. This reduced capacity constraints the models' ability to capture complex patterns and 

representations[19], especially in tasks requiring fine-grained visual understanding. Therefore, the 

performance results observed in this study might underestimate the full potential of these models 

if more advanced configurations were used and the results should be interpreted with this limitation 

in mind[17]. 

(ii) Image and Text Retrieval Setup- Both the Flickr30K and MSCOCO datasets provide 

multiple captions per image, providing a richer and more comprehensive textual context that could 

enhance retrieval performance. However, only one caption per image was utilized for the image 

and text retrieval for the sake of computational efficiency. By limiting the evaluation to one caption 

per image, the experiment may not fully capture the models' capabilities in understanding and 

aligning with diverse textual descriptions. This simplification may be particularly limiting in 

scenarios where different captions highlight different aspects of an image. 

The above decisions were made to optimize computational resources to allow for easier replication 

of the experiments[18]. However, these computational efficient choices may introduce limitations 

to the findings in this paper. Future studies could address these limitations by exploring more 

advanced model configurations and more comprehensive data for retrieval task. 

 

CONCLUSION 

This paper has conducted a comparative evaluation of three prominent Vision-Language Models 

CoCa, FLAVA, and CLIP highlighting their performance across various zero-shot retrieval and 

classification tasks. The analysis revealed that CoCa offers remarkable versatility, showing robust 

performance in both retrieval and classification tasks. In contrast, FLAVA excels specifically in 

retrieval tasks but shows limitations in classification scenarios. CLIP, utilizing a solely contrastive 

learning objective, provides balanced and competitive results across both domains. These 

outcomes underscore the potential benefits of integrating contrastive learning with other training 

methodologies to boost a model's zero-shot capabilities. This insight is crucial for enhancing the 

effectiveness of VLMs in handling diverse and complex tasks without additional task-specific 

training. There is substantial scope for advancing the research on Vision-Language Models by 
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exploring hybrid training techniques that combine the strengths of contrastive, generative, and 

other learning strategies. Future studies could focus on developing new models that incorporate 

these integrated approaches to further improve zero-shot learning capabilities. Additionally, 

extending the evaluation framework to include a broader range of tasks and datasets could provide 

deeper insights into the models' versatility and real-world applicability. Investigating the impact 

of different training data scales and modalities on the performance of VLMs will also be critical. 

Ultimately, these efforts will contribute to the ongoing refinement of VLM technologies, making 

them more adaptable and efficient for practical applications in diverse fields such as autonomous 

navigation, interactive robotics, and digital content management. 
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