

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 231
International Conference on Recent Research in Science and Technology

FPGA Architecture for High-Speed Network Feature Extraction of

Designing Analysis
1JOGU PRAVEEN, M.Tech Assistant Professor, jpraveen.pec@gmail.com

2NENAVATH DASHARATH ,M.Tech Associate Professor , ndasharath86@gmail.com

Department-ECE

Pallavi Engineering College Hyderabad, Telangana 501505.

Abstract

System include extraction includes the capacity and

characterization of system parcel action. Albeit

fundamentally utilized in organize interruption

discovery frameworks, include extraction is likewise

used to decide different angles of a system's

conduct, for example, all out trafc and normal

association size. Current programming techniques

utilized for extraction of system highlights neglect to

meet the exhibition necessities of cutting edge fast

systems. Right now paper, we propose a FPGA-

based reconfigurable engineering for highlight

extraction of enormous fast systems. Our structure

utilizes equal lines of hash capacities and sketch

tables so as to process arrange bundles at a high

throughput. We present a definite portrayal of our

engineering and its execution on a Xilinx Virtex-II

Pro FPGA board, and give cycle-precise planning

results to highlight extraction of information

organizing benchmark information. Our outcomes

exhibit certifiable throughputs of as high as 3.32

Gbps, with speedups arriving at 18 x when contrasted

with a comparable programming execution.

1 Introduction

The goal of a Network Intrusion Detection System

(NIDS) is to detect attacks on any machine within the

localnetwork by monitoring the network activity. In

general, there are two different approaches taken

when protecting networks using intrusion detection-

based systems. The first approach, known as

signature detection, searches for predetermined attack

patterns in the network activity. The second

approach, known as anomaly detection, looks for any

sort of abnormal activity in the network flow, and

then determines if the abnormal behavior is an attack.

Signature detection-based methods are unable to

detect new kinds of attacks, as well as those attacks

that vary significantly from . This observation has

motivated a deeper study of anomaly-based NIDS

mechanisms.

Anomaly detection typically involves two separate

stages. In the first step, network features stored in

packet headers are extracted and stored over an

interval of time. In the second step, a change

detection and classification algorithm

is applied to this stored information in order to detect

attacks. In large-scale high-speed networks, this first

step in anomaly detection is the most crucial. An

efficient NIDS must be able to store and classify

network features without compromising on speed or

loss of information. Considering the increasing size

and speed of modem networks, general-purpose

processors do not meet the requirements of the next

generation of NIDSs. This has motivated researchers

to explore the possibility of using dedicated hardware

for anomaly detection systems in general [2, 3, 15]

and feature extraction/classification in particular [10,

16]. Besides its use in anomaly detection, feature

extraction is key to several other applications such as

data mining [1], speech recognition [12], and image

processing [11], among others. However, due to the

clear needs of performance, we concentrate on using

feature extraction for anomaly detection only.

Particularly, we propose a reconfigurable architecture

for feature extraction of high-speed networks, and

implement this design using FPGAs. By making use

of the inherent parallelism of FPGA hardware, we are

able to speed up our application by a considerable

amount as compared to an equivalent software

implementation. Our architecture is pipelined to

achieve a high throughput, making it suitable for

application in multi-gigabit networks.

We also make use of feature sketches to store

network activity, thus minimizing the required

memory resources. Our results show that the

architecture is several times faster than

the equivalent software implementation and offers a

practical solution for feature extraction of high-speed

networks.

The remainder ofthis paper is organized as follows.

Section 2 provides a brief overview of some of the

main con cepts behind network intrusion detection.

Section 3 motivates the need for hardware

implementation of the feature

extraction process. In Section 4, we describe our

Feature Extraction Module (FEM) architecture and

its various

mailto:jpraveen.pec@gmail.com
mailto:ndasharath86@gmail.com

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 232
International Conference on Recent Research in Science and Technology

building blocks. Section 5 presents an example NIDS

implementation, demonstrating how the FEM module

can be

used to detect certain types of attacks. Section 6

provides details of our implementation and presents

our area and performance results. Related work is

discussed in Section 7, followed by the conclusion in

Section 8.

2 Intrusion Detection Overview

There are a wide variety of attacks prevalent in

modem networks. Detection of each type of attack

requires the monitoring of different network features.

For our implementation of a FEM-based anomaly

detection architecture, we focus on two major

categories of intrusions common to modem day

networks: Denial-of-Service (DoS) attacks and port

scanning attacks. There are many different variations

of DoS attacks including the SYN flood, spoofing,

smurf attack, fraggle attack, and distributed DoS

attack (DDoS). Although our architecture can be

configured to extract features for detection of any

type of the above mentioned attacks, in our study we

focus only on SYN floods and DDoS attacks in a

TCP/IP network. Since the implementation of FEM

depends on the type of attack, we provide a

description of the various attacks and the

corresponding features needed to detect them.

The understanding of these types of attacks requires

some basic knowledge of the 3-way handshake by

which TCP connections are established. First, the

source requestsa connection by sending a packet with

the SYN flag set to the host computer. The host then

responds with a packet having both the SYN and

ACK flags set. To complete this half-open

connection, the source responds with a packet having

the ACK flag set. Typically the host waits for a

certain duration of time for the last acknowledgement

from the source, after which it closes the half-open

connection and the entire process has to be repeated

for a new connection. A host computer in a network

can handle only a finite number of connections at a

time.

The SYNflood is a very common example of a DoS

attack. In the SYN flood attack, the source (attacker)

sends a series of connection requests in a short

duration of time to the host (victim), filling up all of

its connection handling resources. When the host

responds with both the SYN and ACK flags set, the

source purposefully skips sending the last ACK flag

to the host. Consequently the host cannot accept any

requests for a new connection as all of its connection

handling resources are consumed by the half-open

connections. In another variation of SYN flood, the

source spoofs the IP address in the packet which it

sends to the host to request a connection. The host

responds with a SYN/ACK packet to the modified IP

address which will either be non-existent or will be

ignorant of the requested connection. As a result the

3-way handshake is never completed, resulting in

multiple half-open connections at the host. In either

case, if the host computer happens to be a server,

then the entire network is affected as it becomes

unable to accept any new connection requests.

In the DDoS attack, an attacker first gains control of

several computers in the network in order to attack a

server using multiple parallel DoS attacks (like the

SYN flood). This attack is more difficult to detect

than the standard SYN flood since it originates from

multiple sources, none of which is the real source of

the attack. In the port scanning attack, the attacker

scans for open ports on different computers on the

network. During this scan the attacker sends a

connection request to that particular port and

determines whether the port is open from its

response. Similar to the SYN flood attack, in this

attack the 3-way handshake never occurs and usually

ends in the second step. Since the host port's response

must return to the source, the attacker cannot spoof

its IP address in the initial connection request packet.

Consequently, unlike in the case of a DoS attack, a

port scan attacker can be traced back.

3 Application Analysis

The process of extracting features from network

packets consists of two stages. The first stage

involves storing the information associated with

specified fields in the packet header. The fields that

are stored are directly determined by the requested

features. The values of these features are then

computed as a function of the stored information.

This is followed by a second stage in which the

features are classified in order to determine relevant

information about the network activity. As applied in

a NIDS, this second stages uses these extracted

features to detect the occurrence of an attack from

outside the network. A critical aspect of feature

extraction is the speed at which it is performed. A

feature extraction system that is unable to cope with

the throughput of the network packet flow will result

in a loss of features in some packets, thereby

reducing the clarity of the overall network picture.

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 233
International Conference on Recent Research in Science and Technology

Another interesting metric is the number of features

being extracted.

Extracting more features can give a more accurate

picture of the network activity. With the emergence

of multi-gigabit networks, it is highly essential for the

first stage in a feature extraction system to have a

very high throughput. Unlike in signature detection-

based approaches, anomaly detection utilizes the

network features gathered over a period of time to

look for the possibility of occurrence of any attack. In

other words, features need not be sent to the anomaly

detection.

Figure 1. Feature sketch architecture

module for each individual packet. Consequently, the

second stage of the feature extraction system can

afford to have a lower throughput, even if network

speed is very high. General-purpose processors

currently used in the first stage of an anomaly-based

NIDS cannot meet the requirements of high-speed

networks for several reasons. First, extracting

multiple features from a single packet involves

cycling the same data through the processor multiple

times, reducing the effective throughput. Also,

computation of complex features may involve

extensive computation within the processor, again

reducing the overall throughput given the limited

computational parallelism available in general

purpose processors.

In order to overcome these limitations, we propose a

hardware design to implement the first stage of the

feature extraction system. We incorporate both coarse

and fine grained parallelism into the design in order

to obtain a very

high throughput.

3.Related Work

Many network applications have been implemented

in hardware in order to keep up with increasing

network speeds. Since the current-generation FPGAs

are capable of operating at speeds up to 550Mhz,

have comparable capacities to ASIC designs, and

provide some flexibility in implementation, they are

being actively used in developing high-speed

network applications. In the most closely related

work, Nguyen et al. [10] have developed a feature

extraction module that utilizes multi-dimensional

hashes. Although there are some similarities in the

architecture, we provide a novel implementation of

the underlying functions in order to obtain a higher

real-world throughput while consuming significantly

less area. In addition, Nguyen et al. only provide

results from synthesis and do not realize their designs

onto an FPGA.

FPGAs have been used in developing NIDS capable

of operating up to 8 Gbps, where the network

interface and intrusion detection circuitry have been

integrated onto a single FPGA chip [4]. FPGAs have

also been used to implement TCP/IP flow monitors

[13] operating at 3 Gbps. Other network applications

such as internet firewalls [9] working at 2.5 Gbps

have also been implemented using FPGAs. A direct

comparison of these FPGA architectures is difficult

as they have different goals and are targeted towards

different hardware technologies.

5. FEM Architecture

The objective of our Feature Extraction Module

(FEM) is to efficiently collect all of the necessary

flow information from incoming and outgoing

packets in order to detect intrusions. We make use of

feature sketches to store this network information. A

sketch is a probabilistic approach used to summarize

large amount of information given a fixed amount of

memory. Researchers have shown that sketches are

able to summarize large datasets (such as network

activity) with a high level of accuracy [14, 15]. The

FEM consists of several feature sketches connected

in parallel, with each sketch customized to store a

unique feature. The general architecture of our

feature sketch design is shown in Figure 1. A feature

sketch consists of four important blocks: the hash

control, the hash function, the sketch table, and the

estimate block. The only network information which

the FEM needs in order to detect DoS and port

scanning attacks are the source IP, destination IP,

source port, destination port, and selected flags.

The multiple parallel hash functions within each

feature sketch contain a combination of the input

fields. The specific combination depends on the

network activity being analyzed by the FEM, and is

unique for each feature sketch. The hash control

block is configured as a custom input multiplexer for

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 234
International Conference on Recent Research in Science and Technology

this purpose. For our implementation, we use Bob

Jenkins' 32-bit hash function [8] because of the

advantages it offers in terms of speed and fewer

number of collisions.

The Jenkins hash function for hashing of three 32-bit

keys (K[O], K[1], K[2]) is as shown below. The

golden ratio

and seeding values are random values required for

the initialization of a hash function:

A = B = golden ratio;

C= seeding value;

A = A+K[O];

B B + K[1];

C C+K[2];

mitx(A, B, C);

mitx(A, B, C);

The mix function is defined as:

mix(a,b,c) {

a = (a -(b + c)) D(c >> 13);
b = (b -(c + a)) Q(a << 8);

c= (c -(a+b))Q(b >> 13);

a = (a -(b + c)) Q(c >> 12);

b = (b -(c + a)) Q(a << 16);

c= (c -(a+b))Q(b >> 5);

a= (a -(b+c))Q(c>> 3);

b = (b -(c + a))Q(a << 10);

c = (c -(a + b)) Q(b >> 15);

}

The implementation of the Jenkins hash function is

done as shown in Figure 2. The initialization stage

assigns appropriate values to the keys and performs a

minor part of the computation of the mix function.

The rest of the mix function is implemented using

three mix sub-blocks as shown in Figure 2. All the

mix sub-blocks are identical in structure and differ

only in the number of bit shifts performed before

each XOR operation. Each mix sub-block has two

pipeline stages - when added to the single pipeline

stage of the initialization phase, makes the hash

function a thirteen stage pipelined structure. It is

important to note that in this systolic style each

pipelined stage has a maximum of three logical

operations, resulting in a very high clock rate and

throughput.

a) Initialization stageb) b) ith mix sub-block

b) Block level architecture of hash function

Figure 2. Hash function implementation.

In the FEM, the Jenkins' hash takes as its input the

source IP, destination IP, and source/destination

ports. In the configuration where any of these fields

are not required by a feature sketch, they are replaced

by zeroes by the hash control block. Within a single

feature sketch, we use multiple hash functions with

different seeding values so as to minimize the effect

of hash collisions. The number of hash functions

within each feature sketch can be varied depending

on the accuracy requirements. The sketch table is

essentially a hash lookup table which stores the

network flow information contained in the flags. Its

size can also be varied to reduce hash collisions,

depending on the NIDS accuracy requirements.

A common characteristic of the attacks described in

Section 2 is that the 3-way handshake is never fully

established. This 3-way handshake involves only the

SYN and ACK flags. Consequently, in a given time

interval the number of incomplete connections in the

network is an indication of the possibility of an attack

occurring in that interval. Our FEM design applies

this concept when storing the network activity. If the

SYN flag is set in an incoming packet, then the value

in the sketch tables corresponding to that packet is

incremented by one, and if the ACK flag is set that

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 235
International Conference on Recent Research in Science and Technology

value is decremented by one. In other words, for

every connection request the value in a given element

of the feature sketch table is increased by one.

Similarly, once that connection is fully established,

that same value is decreased by one. As will be

described in the following section, in our FPGA

implementation of this FEM design the only attacks

we have considered involve the monitoring of the

SYN and ACK flags.

However, the FEM implementation can be easily

reconfigured to analyze network activity which

involves other flags. As can be seen in Figure 1, the

estimate block selects the correct estimated value for

each feature sketch from the sketch tables. Although

there are various statistical estimation techniques that

can be used for this purpose, we implement our

estimate block as finding the minimum of the

selected values from each sketch table of the feature

sketch. We choose the minimum value as the

estimate since it suffers the least amount from hash

collisions. The output control block then selects the

estimated value of only that feature sketch from

which an estimate request was made. The FEM

supports two functions for its operation:

1. update (src ip, dst ip, src port, dst port, flags)

2. estimate (src ip, dst ip, src port, dst port, FS ID)

The update function is a write-only operation to the

FEM where the flag information of the network

packet is stored in the sketch tables of each feature

sketch. During an update, the write operation is

performed on all of the feature sketches of the FEM.

As previously described, the value written into the

sketch tables is some function of the input flags,

which depends on the network feature beingstored in

each feature sketch. The key value in an update call

(src ip, dst ip, src port, dst port) is used for

determining the address of the sketch table where the

value is to be written into.

6. An FEM-Based NIDS Application

In this section we discuss the practical application of

the FEM architecture and how it can be used as the

basis of a network intrusion detection system. From

the application point of view, the FEM is placed

within the network at some common node through

which all of the network traffic passes. The FEM

module's feature sketches are updated with the values

in the network packets passing through that node. At

any point in time, the FEM contains the up-to-date

information of the network features, which can be

obtained by estimating the feature sketches values

with an appropriate key. This information can be

used to detect attacks using an anomaly-based

intrusion detection algorithm. Consider the FEM

having four feature sketches with keys and values as

shown in Figure 3. As explained in the previous

section, in our current implementation the FEM

extracts only those port fields which are necessary to

detect DoS or port scanning styles of attacks.

Although each feature sketch stores only a specific

feature, the overall nature of the network can be

obtained by combining the information from all the

feature sketches as illustrated below.

In Figure 3, FS1 contains information regarding the

number of incomplete connections at any port of any

computer within the network. So any (dst ip, dst port)

pair in FS1 having a value above some threshold

level is a likely victim of a SYN flood attack.

Similarly, a (dst ip) in FS2 having a high value is also

a probable candidate for a SYN flood attack or it may

be being scanned for any open ports. For any victim

(dst ip) in FS2, the corresponding (dst ip, dst port)

values in FS 1 give the information regarding which

ports are being attacked. For any possible victim (dst

ip) in FS2, if there is a corresponding (src ip, dst ip)

in FS4 having a high value then it can be known

which computer is port scanning or performing a

SYN flood attack on that particular victim. On the

other hand, if there is a possible victim (dst ip) in FS2

but there is no corresponding (src ip, dst ip) in FS4

with a high value, it implies that the destination IP

may be

Figure 3. Sample application study

6.2 Area and Performance Results

Table 1 shows the variation in resource utilization

and performance with respect to the size of a hash

table (K) when FS and H are set to 2. From the trends

it is observed that increasing K while keeping all

other parameters constant does not result in

significant variation in slice utilization.

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 236
International Conference on Recent Research in Science and Technology

Table 2. FEM area and performance summary

This is because the hash tables are mapped onto

Block RAMs which can be verified by noting the

increase in Block RAM utilization when the hash

table size is increased. For the different sizes of the

hash table considered, the throughput is almost

constant, indicating that the hash tables are not on the

critical path of the FEM.

Table 2 shows the area and performance results for

implementation of different configurations of the

FEM on FPGA. From these results it can be observed

that the number of slices utilized is directly

proportional to both FS and H. This is due to the fact

that an increase in FS or H directly corresponds to an

additional hash function and sketch table. By

considering the increments in the slices when FS and

H are increased, we can see that a single hash

function along with one sketch table takes up around

800 slices, which is about 6% of the total number of

available slices on the Xilinx XC2VP30 FPGA. As a

result, the configuration with FS=4 and H=4 occupies

over 9900 of the slices available in our FPGA.

Figure 5. Hardware speedups for different FEM sizes

7.Conclusion

Feature extraction is an important component of

various applications in domains such as networking,

data mining, and signal processing. In this paper we

propose a reconfigurable architecture for real-time

feature extraction of high speed networks used for

anomaly detection, and evaluate its performance

using an FPGA-based hardware development

platform. We show how the FEM can be used to

detect various types of network attacks, and that the

reconfigurability of the architecture provides the

flexibility to store various network features by

making minor changes to the feature sketches.Our

results clearly demonstrate that this architecture is

several times faster than an equivalent software

implementation (up to 18 x). We have also observed

that the relative performance of our hardware

implementation improves as the number of features is

increased, which is desirable for better accuracy. It is

also seen that the throughput (as high as 3.32 Gbps)

is unaffected by the number of features monitored,

thereby making the architecture suitable for high

performance network intrusion detection systems.

References

[1] NIPS 2003 Workshop on Feature Extraction.

Available at

http:Hclopinet.com/isabelle/Projects/NIPS2003,

2003.

[2] Z. Baker and V. Prasanna. Time and area efficient

pattern matching on FPGAs. In Proceedings of the

International Symposium on Field Programmable

Gate Arrays (FPGA), February 2004.

[3] C. Clark, W. Lee, D. Schimmel, D. Contis, M.

Kone, and A. Thomas. A hardware platform for

network intrusion detection and prevention. In

Proceedings of the Third Workshop on Network

Processors andApplications (NP3), February 2003.

[4] C. Clark, C. Ulmer, and D. Schimmel. An FPGA-

based network intrusion detection system with on-

chip network interfaces. International Journal of

Electronics, 93(6), June 2006.

[5] A. DeHon. The density advantage of configurable

computing. IEEE Computer, 33(4), April 2000.

[6] Z. Guo, W. Najjar, F. Vahid, and K. Vissers. A

quantitative analysis of the speedup factors of FPGAs

over processors. In Proceeedings of the International

Symposium on Field- Programmable Gate Arrays

(FPGA), February 2004.

[7] Institute for Visualization and Perception

Research, University of Massachusetts, Lowell.

Contents of network intrusion collected data.

Available at http:Hivpr.cs.uml.edu, 2006.

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 237
International Conference on Recent Research in Science and Technology

[8] B. Jenkins. Hash functions and block ciphers.

Available at http:Hburtleburtle.net/bob/hash, 2006.

[9] J. Moscola, J. Lockwood, R. Loui, and M.

Pachos. Implementation of a content-scanning

module for an internet

firewall. In Proceedings of the IEEE Symposium on

Field-Programmable Custom Computing Machines

(FCCM), April 2003.

[10] D. Nguyen, G. Memik, S. Memik, and A.

Choudhary. Real-time feature extraction for high

speed networks. In

Proceedings of the International Symposium on

Field- Programmable Logic andApplications (FPL),

August 2005.

[11] M. Nixon and A. Aguando. Feature Extraction

and Image Processing. Elsevier, Inc., 2004.

[12] G. Saha, P. Kumar, and S. Chakroborty. A

comparative study of feature extraction algorithms on

ANN based speaker model for speaker recognition

applications. In Proceedings ofthe International

Conference on Neural Information Processing

(ICONIP), November 2004.

[13] D. Schuehler and J. Lockwood. A modular

system for FPGA-based TCP flow processing in

high-speed networks. In Proceedings of the

International Symposium on Field- Programmable

Logic andApplications (FPL), August 2004.

[14] R. Schweller, A. Gupta, E. Parsons, and Y Chen.

Reversible sketches for efficient and accurate change

detection over network data streams. In Proceedings

ofthe ACMInternet Measurement Conference (IMC),

October 2004.

[15] H. Song, S. Dharmapurikar, J. Turner, and J.

Lockwood. Fast hash table lookup using extended

bloom filter: An aid to network processing. In

Proceedings ofACMSIGCOMM, August 2005.

[16] H. Song and J. Lockwood. Efficient packet

classification for network intrusion detection using

FPGA. In Proceedings of the International

Symposium on Field Programmable Gate Arrays

(FPGA), February 2005.

[1] NIPS 2003 Workshop on Feature Extraction.

Available at

http:Hclopinet.com/isabelle/Projects/NIPS2003,

2003.

