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Abstract 

 

System include extraction includes the capacity and 

characterization of system parcel action. Albeit 

fundamentally  utilized in organize interruption 

discovery frameworks, include extraction is likewise 

used to decide different angles   of a system's 

conduct, for example, all out trafc and normal 

association size. Current programming techniques 

utilized for extraction  of system highlights neglect to 

meet the exhibition necessities of cutting edge fast 

systems. Right now  paper, we propose a FPGA-

based reconfigurable engineering for highlight 

extraction of enormous fast systems.  Our structure 

utilizes equal lines of hash capacities and sketch 

tables so as to process arrange bundles at a  high 

throughput. We present a definite portrayal of our 

engineering and its execution on a Xilinx Virtex-II 

Pro FPGA board, and give cycle-precise planning 

results to highlight extraction of information 

organizing benchmark information. Our outcomes 

exhibit certifiable throughputs of as high as 3.32 

Gbps, with speedups arriving at 18 x when contrasted 

with a comparable programming execution. 

 

1 Introduction 

 

The goal of a Network Intrusion Detection System 

(NIDS) is to detect attacks on any machine within the 

localnetwork by monitoring the network activity. In 

general, there are two different approaches taken 

when protecting networks using intrusion detection-

based systems. The first approach, known as 

signature detection, searches for predetermined attack 

patterns in the network activity. The second 

approach, known as anomaly detection, looks for any 

sort of abnormal activity in the network flow, and 

then determines if the abnormal behavior is an attack. 

Signature detection-based methods are unable to 

detect new kinds of attacks, as well as those attacks 

that vary significantly from . This observation has 

motivated a deeper study of anomaly-based NIDS 

mechanisms. 

 

Anomaly detection typically involves two separate 

stages. In the first step, network features stored in 

packet headers are extracted and stored over an 

interval of time. In the second step, a change 

detection and classification algorithm 

is applied to this stored information in order to detect 

attacks. In large-scale high-speed networks, this first 

step in anomaly detection is the most crucial. An 

efficient NIDS must be able to store and classify 

network features without compromising on speed or 

loss of information. Considering the increasing size 

and speed of modem networks, general-purpose 

processors do not meet the requirements of the next 

generation of NIDSs. This has motivated researchers 

to explore the possibility of using dedicated hardware 

for anomaly detection systems in general [2, 3, 15] 

and feature extraction/classification in particular [10, 

16]. Besides its use in anomaly detection, feature 

extraction is key to several other applications such as 

data mining [1], speech recognition [12], and image 

processing [11], among others. However, due to the 

clear needs of performance, we concentrate on using 

feature extraction for anomaly detection only. 

Particularly, we propose a reconfigurable architecture 

for feature extraction of high-speed networks, and 

implement this design using FPGAs. By making use 

of the inherent parallelism of FPGA hardware, we are 

able to speed up our application by a considerable 

amount as compared to an equivalent software 

implementation. Our architecture is pipelined to 

achieve a high throughput, making it suitable for 

application in multi-gigabit networks.  

We also make use of feature sketches to store 

network activity, thus minimizing the required 

memory resources. Our results show that the 

architecture is several times faster than 

the equivalent software implementation and offers a 

practical solution for feature extraction of high-speed 

networks. 

The remainder ofthis paper is organized as follows. 

Section 2 provides a brief overview of some of the 

main con cepts behind network intrusion detection. 

Section 3 motivates the need for hardware 

implementation of the feature 

extraction process. In Section 4, we describe our 

Feature Extraction Module (FEM) architecture and 

its various 
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building blocks. Section 5 presents an example NIDS 

implementation, demonstrating how the FEM module 

can be 

used to detect certain types of attacks. Section 6 

provides details of our implementation and presents 

our area and performance results. Related work is 

discussed in Section 7, followed by the conclusion in 

Section 8. 

 

2 Intrusion Detection Overview 

 

There are a wide variety of attacks prevalent in 

modem networks. Detection of each type of attack 

requires the monitoring of different network features. 

For our implementation of a FEM-based anomaly 

detection architecture, we focus on two major 

categories of intrusions common to modem day 

networks: Denial-of-Service (DoS) attacks and port 

scanning attacks. There are many different variations 

of DoS attacks including the SYN flood, spoofing, 

smurf attack, fraggle attack, and distributed DoS 

attack (DDoS). Although our architecture can be 

configured to extract features for detection of any 

type of the above mentioned attacks, in our study we 

focus only on SYN floods and DDoS attacks in a 

TCP/IP network. Since the implementation of FEM 

depends on the type of attack, we provide a 

description of the various attacks and the 

corresponding features needed to detect them. 

 

The understanding of these types of attacks requires 

some basic knowledge of the 3-way handshake by 

which TCP connections are established. First, the 

source requestsa connection by sending a packet with 

the SYN flag set to the host computer. The host then 

responds with a packet having both the SYN and 

ACK flags set. To complete this half-open 

connection, the source responds with a packet having 

the ACK flag set. Typically the host waits for a 

certain duration of time for the last acknowledgement 

from the source, after which it closes the half-open 

connection and the entire process has to be repeated 

for a new connection. A host computer in a network 

can handle only a finite number of connections at a 

time. 

 

The SYNflood is a very common example of a DoS 

attack. In the SYN flood attack, the source (attacker) 

sends a series of connection requests in a short 

duration of time to the host (victim), filling up all of 

its connection handling resources. When the host 

responds with both the SYN and ACK flags set, the 

source purposefully skips sending the last ACK flag 

to the host. Consequently the host cannot accept any 

requests for a new connection as all of its connection 

handling resources are consumed by the half-open 

connections. In another variation of SYN flood, the 

source spoofs the IP address in the packet which it 

sends to the host to request a connection. The host 

responds with a SYN/ACK packet to the modified IP 

address which will either be non-existent or will be 

ignorant of the requested connection. As a result the 

3-way handshake is never completed, resulting in 

multiple half-open connections at the host. In either 

case, if the host computer happens to be a server, 

then the entire network is affected as it becomes 

unable to accept any new connection requests. 

 

In the DDoS attack, an attacker first gains control of 

several computers in the network in order to attack a 

server using multiple parallel DoS attacks (like the 

SYN flood). This attack is more difficult to detect 

than the standard SYN flood since it originates from 

multiple sources, none of which is the real source of 

the attack. In the port scanning attack, the attacker 

scans for open ports on different computers on the 

network. During this scan the attacker sends a 

connection request to that particular port and 

determines whether the port is open from its 

response. Similar to the SYN flood attack, in this 

attack the 3-way handshake never occurs and usually 

ends in the second step. Since the host port's response 

must return to the source, the attacker cannot spoof 

its IP address in the initial connection request packet. 

Consequently, unlike in the case of a DoS attack, a 

port scan attacker can be traced back. 

 

3 Application Analysis 

 

The process of extracting features from network 

packets consists of two stages. The first stage 

involves storing the information associated with 

specified fields in the packet header. The fields that 

are stored are directly determined by the requested 

features. The values of these features are then 

computed as a function of the stored information. 

This is followed by a second stage in which the 

features are classified in order to determine relevant 

information about the network activity. As applied in 

a NIDS, this second stages uses these extracted 

features to detect the occurrence of an attack from 

outside the network. A critical aspect of feature 

extraction is the speed at which it is performed. A 

feature extraction system that is unable to cope with 

the throughput of the network packet flow will result 

in a loss of features in some packets, thereby 

reducing the clarity of the overall network picture. 
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Another interesting metric is the number of features 

being extracted. 

 

Extracting more features can give a more accurate 

picture of the network activity. With the emergence 

of multi-gigabit networks, it is highly essential for the 

first stage in a feature extraction system to have a 

very high throughput. Unlike in signature detection-

based approaches, anomaly detection utilizes the 

network features gathered over a period of time to 

look for the possibility of occurrence of any attack. In 

other words, features need not be sent to the anomaly 

detection. 

 
Figure 1. Feature sketch architecture 

 

module for each individual packet. Consequently, the 

second stage of the feature extraction system can 

afford to have a lower throughput, even if network 

speed is very high. General-purpose processors 

currently used in the first stage of an anomaly-based 

NIDS cannot meet the requirements of high-speed 

networks for several reasons. First, extracting 

multiple features from a single packet involves 

cycling the same data through the processor multiple 

times, reducing the effective throughput. Also, 

computation of complex features may involve 

extensive computation within the processor, again 

reducing the overall throughput given the limited 

computational parallelism available in general 

purpose processors. 

In order to overcome these limitations, we propose a 

hardware design to implement the first stage of the 

feature extraction system. We incorporate both coarse 

and fine grained parallelism into the design in order 

to obtain a very 

high throughput. 

 

3.Related Work 
 

Many network applications have been implemented 

in hardware in order to keep up with increasing 

network speeds. Since the current-generation FPGAs 

are capable of operating at speeds up to 550Mhz, 

have comparable capacities to ASIC designs, and 

provide some flexibility in implementation, they are 

being actively used in developing high-speed 

network applications. In the most closely related 

work, Nguyen et al. [10] have developed a feature 

extraction module that utilizes multi-dimensional 

hashes. Although there are some similarities in the 

architecture, we provide a novel implementation of 

the underlying functions in order to obtain a higher 

real-world throughput while consuming significantly 

less area. In addition, Nguyen et al. only provide 

results from synthesis and do not realize their designs 

onto an FPGA. 

 

FPGAs have been used in developing NIDS capable 

of operating up to 8 Gbps, where the network 

interface and intrusion detection circuitry have been 

integrated onto a single FPGA chip [4]. FPGAs have 

also been used to implement TCP/IP flow monitors 

[13] operating at 3 Gbps. Other network applications 

such as internet firewalls [9] working at 2.5 Gbps 

have also been implemented using FPGAs. A direct 

comparison of these FPGA architectures is difficult 

as they have different goals and are targeted towards 

different hardware technologies. 

 

5. FEM Architecture 

 

The objective of our Feature Extraction Module 

(FEM) is to efficiently collect all of the necessary 

flow information from incoming and outgoing 

packets in order to detect intrusions. We make use of 

feature sketches to store this network information. A 

sketch is a probabilistic approach used to summarize 

large amount of information given a fixed amount of 

memory. Researchers have shown that sketches are 

able to summarize large datasets (such as network 

activity) with a high level of accuracy [14, 15]. The 

FEM consists of several feature sketches connected 

in parallel, with each sketch customized to store a 

unique feature. The general architecture of our 

feature sketch design is shown in Figure 1. A feature 

sketch consists of four important blocks: the hash 

control, the hash function, the sketch table, and the 

estimate block. The only network information which 

the FEM needs in order to detect DoS and port 

scanning attacks are the source IP, destination IP, 

source port, destination port, and selected flags. 

 

The multiple parallel hash functions within each 

feature sketch contain a combination of the input 

fields. The specific combination depends on the 

network activity being analyzed by the FEM, and is 

unique for each feature sketch. The hash control 

block is configured as a custom input multiplexer for 
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this purpose. For our implementation, we use Bob 

Jenkins' 32-bit hash function [8] because of the 

advantages it offers in terms of speed and fewer 

number of collisions. 

The Jenkins hash function for hashing of three 32-bit 

keys (K[O], K[1], K[2]) is as shown below. The 

golden ratio 

and seeding values are random values required for 

the initialization of a hash function: 

 

A = B = golden ratio; 

C= seeding value; 

A = A+K[O]; 

B B + K[1]; 

C C+K[2]; 

mitx(A, B, C); 

mitx(A, B, C); 

 

The mix function is defined as: 

mix(a,b,c) { 

a = (a -(b + c)) D(c >> 13); 
b = (b -(c + a)) Q(a << 8); 

c= (c -(a+b))Q(b >> 13); 

a = (a -(b + c)) Q(c >> 12); 

b = (b -(c + a)) Q(a << 16); 

c= (c -(a+b))Q(b >> 5); 

a= (a -(b+c))Q(c>> 3); 

b = (b -(c + a))Q(a << 10); 

c = (c -(a + b)) Q(b >> 15); 

} 

 
The implementation of the Jenkins hash function is 

done as shown in Figure 2. The initialization stage 

assigns appropriate values to the keys and performs a 

minor part of the computation of the mix function. 

The rest of the mix function is implemented using 

three mix sub-blocks as shown in Figure 2. All the 

mix sub-blocks are identical in structure and differ 

only in the number of bit shifts performed before 

each XOR operation. Each mix sub-block has two 

pipeline stages - when added to the single pipeline 

stage of the initialization phase, makes the hash 

function a thirteen stage pipelined structure. It is 

important to note that in this systolic style each 

pipelined stage has a maximum of three logical 

operations, resulting in a very high clock rate and 

throughput. 

 

 
a) Initialization stageb) b) ith mix sub-block 

 

 

 
b) Block level architecture of hash function 

Figure 2. Hash function implementation. 

 

In the FEM, the Jenkins' hash takes as its input the 

source IP, destination IP, and source/destination 

ports. In the configuration where any of these fields 

are not required by a feature sketch, they are replaced 

by zeroes by the hash control block. Within a single 

feature sketch, we use multiple hash functions with 

different seeding values so as to minimize the effect 

of hash collisions. The number of hash functions 

within each feature sketch can be varied depending 

on the accuracy requirements. The sketch table is 

essentially a hash lookup table which stores the 

network flow information contained in the flags. Its 

size can also be varied to reduce hash collisions, 

depending on the NIDS accuracy requirements. 

 

A common characteristic of the attacks described in 

Section 2 is that the 3-way handshake is never fully 

established. This 3-way handshake involves only the 

SYN and ACK flags. Consequently, in a given time 

interval the number of incomplete connections in the 

network is an indication of the possibility of an attack 

occurring in that interval. Our FEM design applies 

this concept when storing the network activity. If the 

SYN flag is set in an incoming packet, then the value 

in the sketch tables corresponding to that packet is 

incremented by one, and if the ACK flag is set that 
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value is decremented by one. In other words, for 

every connection request the value in a given element 

of the feature sketch table is increased by one. 

Similarly, once that connection is fully established, 

that same value is decreased by one. As will be 

described in the following section, in our FPGA 

implementation of this FEM design the only attacks 

we have considered involve the monitoring of the 

SYN and ACK flags. 

  

However, the FEM implementation can be easily 

reconfigured to analyze network activity which 

involves other flags. As can be seen in Figure 1, the 

estimate block selects the correct estimated value for 

each feature sketch from the sketch tables. Although 

there are various statistical estimation techniques that 

can be used for this purpose, we implement our 

estimate block as finding the minimum of the 

selected values from each sketch table of the feature 

sketch. We choose the minimum value as the 

estimate since it suffers the least amount from hash 

collisions. The output control block then selects the 

estimated value of only that feature sketch from 

which an estimate request was made. The FEM 

supports two functions for its operation: 

 

1. update (src ip, dst ip, src port, dst port, flags) 

2. estimate (src ip, dst ip, src port, dst port, FS ID) 

The update function is a write-only operation to the 

 

FEM where the flag information of the network 

packet is stored in the sketch tables of each feature 

sketch. During an update, the write operation is 

performed on all of the feature sketches of the FEM. 

As previously described, the value written into the 

sketch tables is some function of the input flags, 

which depends on the network feature beingstored in 

each feature sketch. The key value in an update call 

(src ip, dst ip, src port, dst port) is used for 

determining the address of the sketch table where the 

value is to be written into. 

 

6. An FEM-Based NIDS Application 

 

In this section we discuss the practical application of 

the FEM architecture and how it can be used as the 

basis of a network intrusion detection system. From 

the application point of view, the FEM is placed 

within the network at some common node through 

which all of the network traffic passes. The FEM 

module's feature sketches are updated with the values 

in the network packets passing through that node. At 

any point in time, the FEM contains the up-to-date 

information of the network features, which can be 

obtained by estimating the feature sketches values 

with an appropriate key. This information can be 

used to detect attacks using an anomaly-based 

intrusion detection algorithm. Consider the FEM 

having four feature sketches with keys and values as 

shown in Figure 3. As explained in the previous 

section, in our current implementation the FEM 

extracts only those port fields which are necessary to 

detect DoS or port scanning styles of attacks. 

Although each feature sketch stores only a specific 

feature, the overall nature of the network can be 

obtained by combining the information from all the 

feature sketches as illustrated below. 

In Figure 3, FS1 contains information regarding the 

number of incomplete connections at any port of any 

computer within the network. So any (dst ip, dst port) 

pair in FS1 having a value above some threshold 

level is a likely victim of a SYN flood attack. 

Similarly, a (dst ip) in FS2 having a high value is also 

a probable candidate for a SYN flood attack or it may 

be being scanned for any open ports. For any victim 

(dst ip) in FS2, the corresponding (dst ip, dst port) 

values in FS 1 give the information regarding which 

ports are being attacked. For any possible victim (dst 

ip) in FS2, if there is a corresponding (src ip, dst ip) 

in FS4 having a high value then it can be known 

which computer is port scanning or performing a 

SYN flood attack on that particular victim. On the 

other hand, if there is a possible victim (dst ip) in FS2 

but there is no corresponding (src ip, dst ip) in FS4 

with a high value, it implies that the destination IP 

may be 

 
Figure 3. Sample application study 

 

6.2 Area and Performance Results 

Table 1 shows the variation in resource utilization 

and performance with respect to the size of a hash 

table (K) when FS and H are set to 2. From the trends 

it is observed that increasing K while keeping all 

other parameters constant does not result in 

significant variation in slice utilization. 
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Table 2. FEM area and performance summary 

 

This is because the hash tables are mapped onto 

Block RAMs which can be verified by noting the 

increase in Block RAM utilization when the hash 

table size is increased. For the different sizes of the 

hash table considered, the throughput is almost 

constant, indicating that the hash tables are not on the 

critical path of the FEM. 

 

Table 2 shows the area and performance results for 

implementation of different configurations of the 

FEM on FPGA. From these results it can be observed 

that the number of slices utilized is directly 

proportional to both FS and H. This is due to the fact 

that an increase in FS or H directly corresponds to an 

additional hash function and sketch table. By 

considering the increments in the slices when FS and 

H are increased, we can see that a single hash 

function along with one sketch table takes up around 

800 slices, which is about 6% of the total number of 

available slices on the Xilinx XC2VP30 FPGA. As a 

result, the configuration with FS=4 and H=4 occupies 

over 9900 of the slices available in our FPGA. 

 

 
Figure 5. Hardware speedups for different FEM sizes 

 

7.Conclusion 
 

Feature extraction is an important component of 

various applications in domains such as networking, 

data mining, and signal processing. In this paper we 

propose a reconfigurable architecture for real-time 

feature extraction of high speed networks used for 

anomaly detection, and evaluate its performance 

using an FPGA-based hardware development 

platform. We show how the FEM can be used to 

detect various types of network attacks, and that the 

reconfigurability of the architecture provides the 

flexibility to store various network features by 

making minor changes to the feature sketches.Our 

results clearly demonstrate that this architecture is 

several times faster than an equivalent software 

implementation (up to 18 x). We have also observed 

that the relative performance of our hardware 

implementation improves as the number of features is 

increased, which is desirable for better accuracy. It is 

also seen that the throughput (as high as 3.32 Gbps) 

is unaffected by the number of features monitored, 

thereby making the architecture suitable for high 

performance network intrusion detection systems. 
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