

Volume 13, Issue 02, Jan 2023 ISSN 2457-0362 Page 14

SOFTWARE DEFECT ESTIMATION USING MACHINE

LEARNING ALGORITHMS

Dr.M.Dhasaratham, Professor, Department of Computer Science and Engineering, Teegala Krishna

Reddy Engineering College, Hyd.
ChepuriSpandana, B.Tech.,Department of Computer Science and Engineering, Teegala Krishna

Reddy Engineering College, Hyd.

dasarath.m@gmail.com,spandanachepuri257@gmail.com

ABSTRACT:

Software Engineering is a comprehensive domain since it requires a tight

communication between system stakeholders and delivering the system to be

developed within a determinate time and a limited budget. Delivering the customer

requirements include procuring high performance by minimizing the system. Thanks

to effective prediction of system defects on the front line of the project life cycle, the

project‘s resources and the effort or the software developers can be allocated more

efficiently for system development and quality assurance activities. The main aim of

this paper is to evaluate the capability of machine learning algorithms in software

defect prediction and find the best category while comparing seven machine learning

algorithms within the context of four NASA datasets obtained from public PROMISE

repository [12]. All in all, the results of ensemble learners category consisting of

Random Forests (RF) and Bagging in defect prediction is pretty much its counterparts.

Keywords—Software quality metrics, Software defect predic-tion, Software fault

prediction, Machine learning algorithms

INTRODUCTION

Developing a software system is

an arduous process which contains

planning, analysis, design,

implementation, testing,

integration and maintenance. A

software engineer is expected to

develop a software system on time

and within limited the budget

which are determined during the

planning phase. During the

development process, there can be

some defects such as improper

design, poor functional logic,

improper data handling, wrong

coding, etc. and these defects may

cause errors which lead to rework,

increases in development and

Volume 13, Issue 02, Jan 2023 ISSN 2457-0362 Page 15

maintenance costs decrease in

customer satisfaction. A defect

management approach should be

applied in order to improve

software quality by tracking of

these defects. In this approach,

defects are categorized depending

on the severity and corrective and

preventive actions are taken as per

the severity defined. Studies have

shown that ‘defect prevention‘

strategies on behalf of ‘defect

detection‘ strategies are used in

current methods [10]. Using defect

prevention strategies to reduce

defects generating during the

software development the process

is a costly job. It requires more

effort and leads to increases in

project costs. Accordingly,

detecting defects in the software

on the front line of the project life

cycle is crucial. The

implementation of machine

learning algorithms which is the

binary prediction model enables

identifydefectprone modules in the

software system before a failure

occurs during development

process. In this research, our aim

is to evaluate the software defect

prediction performance of seven

machine learning algorithms by

utilizing quality metrics; accuracy,

precision, recall, F-measure

associated with defects as an

independent variable and find the

best category while comparing

software defect prediction

performance of these machine

learning algorithms within the

context of four NASA datasets

obtained from public PROMISE

repository [12]. The selected

machine learning algorithms for

comparison are used for

supervised learning to solve

classification problems. They are

two tree-structured classifier

techniques: (i) Bagging and (ii)

Random Forests (RF); two neural

networks techniques: (i)

Multilayer Perceptron (MLP) and

(ii) Radial Basis Function (RBF);

two Bayesian classifier

techniques: (i) Naive Bayes and

(ii) Multinomial Naive Bayes; and

one discriminative classifier

Support Vector Machine (SVM).

The remainder of the paper is

organized as follows: Section 2

briefly describes the related work,

while Section 3 describes the

experimental methodology in

detail. Section 4 contains the

conclusion of the experimental

study and underlined some

possible future research directions.

Volume 13, Issue 02, Jan 2023 ISSN 2457-0362 Page 16

LITERATURE SURVEY:

There are a great variety of studies

which have developed and applied

statistical and machine learning based

models for defect prediction in software

systems. Basili et al. (1996) [1] have

used logistic regression in order to

examine what the effect of the suite of

object-oriented design metrics is on the

prediction of fault-prone classes.

Khoshgoftaar et al. (1997) [7] have used

the neural network in order to classify

the modules of large telecommunication

systems as fault-prone or not and

compared it with a non-parametric

discriminant model. The results of their

study have shown that compared to the

non-parametric discriminant model, the

predictive accuracy of the neural

network model had a better result. Then

in 2002 [6], they made a case study by

using regression trees to classify fault-

prone modules of enormous

telecommunication systems. Fenton et al.

(2002) [4] have used Bayesian Belief

Network in order to identify software

defects. However, this machine learning

algorithm has lots of limitations which

have been recognized by Weaver(2003)

[14] and Ma et al. (2007) [9]. Guo et al.

(2004) [5] have applied Random Forest

algorithm on software defect dataset

introduced by NASA to predict fault-

prone modules of software systems and

compared their model with some

statistical and machine learning models.

The result of this comparison has shown

that compared to other methods, the

random forest algorithm has given better

predictive accuracy. Ceylan et al. (2006)

[2] have proposed a model which uses

three machine learning algorithms that

are Decision Tree, Multilayer Perceptron

and Radial Basis Functions in order to

identify the impact of this model to

predict defects on different software

metric datasets obtained from the

real*life projects of three big-size

software companies in Turkey. The

results have shown thatall of the

machine learning algorithms had similar

results which have enabled to predict

potentially defective software and take

actions to correct them. Elish et al.

(2008) [3] have investigated the impact

of Support Vector Machines on four

NASA datasets to predict defect-

proneness of software systems and

compared the prediction performance of

SVM against eight statistical and

machine learning models. The results

have indicated that the prediction

performance of SVM has been much

better than others. Kim et al. (2011) [8]

have investigated the impact of the noise

on defect prediction to cope with the

noise in defect data by using a noise

detection and elimination algorithm. The

results of the study have presented that

noisy instances could be predicted with

reasonable accuracy and applying

elimination has improved the defect

prediction accuracy. Wang at all. (2013)

[13] have investigated re-sampling

techniques, ensemble algorithms and

threshold moving as class imbalance

learning methods for software defect

prediction. They have used different

methods and among them,

AdaBoost.NC had better defect

prediction performance. They have also

improved the effectiveness and

efficiency of AdaBoost.NC by using a

dynamic version of it. Ren at al. (2014)

[11] have proposed a model to solve the

class imbalance problem which causes a

reduction in the performance of defect

prediction. The Gaussian function has

been used as kernel function for both the

Asymmetric Kernel Partial Least

Squares Classifier (AKPLSC) and

Asymmetric Kernel Principal

Component Analysis Classifier

(AKPCAC) and NASA and SOFTLAB

datasets have been used for experiments.

The results have shown that the

AKPLSC had better impact on retrieving

the loss caused by class imbalance and

the AKPCAC had better performance to

predict defects on imbalanced datasets.

There is also a systematic review study

conducted byMalhotra to review the

Volume 13, Issue 02, Jan 2023 ISSN 2457-0362 Page 17

machine learning algorithms for

software fault prediction.

EXISTINGSYSTEM:

In the existing system,have proposed a

model to solve the class imbalance

problem which causes a reduction in the

performance of defect prediction. The

Gaussian function has been used as

kernel function for both the Asymmetric

Kernel Partial Least Squares Classifier

(AKPLSC) and Asymmetric Kernel

Principal Component Analysis Classifier

(AKPCAC) and NASA and SOFTLAB

datasets have been used for experiments.

The results have shown that the

AKPLSC had better impact on retrieving

the loss caused by class imbalance and

the AKPCAC had better performance to

predict defects on imbalanced datasets.

There is also a systematic review study

conducted by Malhotra to review the

machine learning algorithms for

software fault prediction.

PROPOSEDSYSTEM:

The proposed system includes SVM,

Multilayer Perceptron, Run Bagging

algorithm, Naive Bayes algorithm,

Random Forest algorithm, Multinomial

NB and Radial Basis Functions to solve

the class misbalancing problem which

causes in the decreasing performance of

defect prediction. The dataset has been

trained and spitted according to the

constraints and using the accuracies has

been defined in order to measure the

defect estimation capability of various

algorithms proposed.

Advantages of proposed system:

1. Predicted model is used for evaluating

the performance measures.

2. We can apply various datasets in this

project. But we are using NASA datasets

in our project.

3. Software defects are classified to the

extent.

4. Advance measures can be taken on

selection of algorithm

5. Provides Better results.

6. Identify defects in the early stage of

the project which in turn results in

Customer loyalty.

METHODLOGY

A. Datasets
The datasets which are available from

the public PROMISE repository [12]

and used for this task are detailed in

Table II. These datasets have different

number of instances. The dataset with

the most data in terms of the number of

instances is PJ1. Data sets of different

sizes have been selected to demonstrate

the effect of data size on accuracy. In

Table II, each dataset explained with

language, number of attributes, number

of instances, percentage of defective

modules and description. The number of

attributes is equal for each dataset.

Attribute information is shown in Table

I.

B. Learning Algorithms In this

experiment, the study of Malhotraet. al.

(2015) [10] have been guiding us while

deciding to select which machine

learning algorithms we have used for

defect prediction in software systems.

They categorized the machine learning

algorithms based on distinct learners

such as Ensemble Learners, Bayesian

Learners, Neural Networks and SVM.

According to these categories, we

selected seven different machine

learning algorithms to estimate software

defect. These algorithms used and their

categories are shown in Figure 1. Each

algorithm is detailed below. K-fold

Cross-Validation (CV) model is

employed for each learning algorithm to

model validation. The k value is

determined as 10 in this experiment.

Since the number of samples TABLE I

B.

Volume 13, Issue 02, Jan 2023 ISSN 2457-0362 Page 18

for Software Defect Prediction in the

used datasets are equal to 10, the data is

divided into 10 folds. That means k-1

objects in the dataset are used as training

samples and one object is used as test

sample in the each iteration. That is,

every data fold is used as a validation set

exactly once and falls into a training set

k-1 times. Then the average error across

all k trials which is equal to the number

of samples in the dataset is computed.

The process of k-Fold Cross-Validation

of our study is as shown in Figure

2. Fig. 2. Process of k-Fold Cross

Validation for Software Defect

Estimation

1) Bayesian Learners:
• Naive Bayes: Naive Bayes which is

one of the most commonly used

algorithms for classifying problems is

simple probabilistic classifier and is

based on Bayes

TABLE II

Volume 13, Issue 02, Jan 2023 ISSN 2457-0362 Page 19

Theorem. It determines the probability

of each features occurring in each class

and returns the outcome with the highest

probability.

P(A|B) = P(B|A)P(A) P(B)

• 0XOWLQRPLDO 1DLYH %D\HV:

Multinomial Naive Bayes classifier is

obtained by enlarging Naive Bayes

classifier. Differently from the Naive

Bayes classifier, a multinomial

distribution is used for each features.

2) Ensemble Learners:
 • Bagging: This algorithm which is

introduced by Leo Breiman and also

called Bootstrap Aggregation is one of

the ensemble methods. In this approach,

N sub-samples of data from the training

sample are created and the predictive

model is trained by using these subset

data. Sub-samples are chosen randomly

with replacement. As a result, the final

model is an ensemble of different

models.

• Random forest: Random Forest

algorithms which also called random

decision forest is an ensemble tree-based

learning algorithm. It makes a prediction

over individual trees and selects the best

vote of all predicted classes over trees to

reduce overfitting and improve

generalization accuracy. It is also the

most flexible and easy to use for both

classification and regression.

3) Neural Networks:
Multilayer Perceptron: Multilayer

Perceptron which is one of the types of

Neural Networks comprises of one input

layer, one output layer and at least one

or more hidden layers. This algorithm

transfers the data from the input layer to

the output layer, which is called

feedforward. For training, the

backpropagation technique is used. One

hidden layer with (attributes + classes) /

2 units are used for this experiment.

Each dataset has 22 attributes and 2

classes which are false and true. We

determined the learning rate as 0.3 and

momentum as 0.2 for each dataset.

 •Radial Basis Function Network:

Radial Basis Function Network includes

an input vector for classification, a layer

of RBF neurons, and an output layer

which has a node for each class. Dot

products method is used between inputs

and weights and for activation sigmoidal

activation functions are used in MLP

while in RBFN between inputs and

weights Euclidean distances method is

used and as activation function,

Gaussian activation functions are used.

4) Support Vector Machines: Support

vector machine (SVM) is a supervised

machine learning method capable of

both classification and regression. It is

one of the most effective and simple

methods used in classification. For

classification, it is possible to separate

two groups by drawing decision

boundaries between two classes of data

points in a hyperplane. The main

objective of this algorithm is to find

optimal hyperplane.

C.Evaluation MetricsTo evaluate

learning algorithms which are stated

above, commonly used evaluation

metrics are used such as accuracy,

precision, recall, F-measure. The

performance of the model of each

algorithm is evaluated by using the

confusion matrix which is called as an

error matrix and is a summary of

prediction results on a classification

problem. Evaluation of model is the

most important for classification

problem where the output can be of two

or more types of classes and the

confusion matrix is one of the most

commonly used and easiest metrics for

determining the accuracy of the model.

It has True Positive (TP), True Negative

(TN), False Positive (FP) and False

Negative (FN) values. • Positive (P) :

Observation is positive (for example: is

an defective).

• Negative (N) : Observation is not

positive (for example: is not an

defective).

 • True Positive (TP) : The model has

estimated true and the test data is true.

Volume 13, Issue 02, Jan 2023 ISSN 2457-0362 Page 20

 • False Negative (FN) : The model has

estimated false and the test data is true.

 • True Negative (TN) : The model has

estimated false and the test data is false.

• False Positive (FP) : The model has

estimated true and the test data is false.

1) Accuracy: Accuracy which is called

classification rate is given by the

following relation: Accuracy = T P + T

N /T P + T N + F P + F N

TABLE IIIRESULTS FOR EACH

DATASET

2) Recall: To get the value of Recall,

correctly predicted positive

observations is divided by the all

observations in actual class and it can

be defined as below: Recall = T P T P +

F N

 3) Precision: Precision is the ratio of

the total number of correctly classified

positive examples to the number of

predicted positive examples. As shown

in Equation 4, As decreases the value of

FP, precision increases and it indicates

an example labeled as positive is indeed

positive.

 P recision = T P /T P + F P

3) F-measure: Unlike recall and

precision, this metric takes into account

both false positives(FP) and false

negatives(FN). F-measure is the

weighted harmonic mean of the

precision and recall of the test. The

equation of this metric is shown in

Equation 5. P recision = 2 ∗ Recall ∗ P

recision Recall + P recision (5) D.

Experimental Results We performed

experiments on the four different

datasets which have a different number

of attributes and results were shown in

Table III. There are many ways to

evaluate any machine learning

algorithm and evaluation of the model

is a very essential part of any project. In

this experiment, different evaluation

metrics which are given above are used

to evaluate model performance. For

each machine learning algorithm and

each dataset, the best classification

performance result is showed in

boldfaced print. The first notable

observation from these experimental

results which are shown in Table III is

that RF and Bagging learning algorithm

which is a tree-based algorithm is better

than other learning algorithm categories.

The performance difference between

each machine learning algorithm is

shown in Figure 3 clearly. As shown in

Figure 3, the results of the tree-based

learning algorithm are better compared

to other algorithms except for KC2

dataset. Although datasets of different

sizes were used, no major differences

were observed in performance. Figure 3

shows that ensemble learners are better

at software defect estimation and it is

also a powerful way to improve the

performance of the model. It is a more

successful model than individual

models because of combining several

diverse classifiers together.

Volume 13, Issue 02, Jan 2023 ISSN 2457-0362 Page 21

RESULTS:

OUTPUT SCREENS:
Step-1: Double click on windows batch

file to load the GUI:

GUI:

Step-2: Click on upload NASA Data Set:

On uploading CM1 Data set we can see

total dataset size and training size

records and testing size records

application obtained from dataset to

build train model.

Step-3:Now click on ‗Run Multilayer

Perceptron Algorithm‘ button to

generate model and to get its accuracy

Step-4: Now click on ―Run Radial Basis

Function Algorithm‖ button to generate

model and to get its accuracy Step-5:

Click on Support vector Machine

Algorithm to generate its accuracy.

Step-6: Click on Run Bagging

Algorithm for generating accuracy.

Step-7: Click on Run Random Forest

algorithm for generating accuracy. Step-

8: Click on Naive Bayes algorithm for

generating accuracy. Step-9: Click on

Multinomial NB algorithm for

generating accuracy. Step-10: Click on

―All Algorithms Accuracy Graph‖

Button:

Volume 13, Issue 02, Jan 2023 ISSN 2457-0362 Page 22

In above graph x-axis represents

algorithm name and yaxis represents

accuracy of those algorithms.

CONCLUSION :

In this experimental study, seven

machine learning algorithms are used to

predict defectiveness of software

systems before they are released to the

real environment and/or delivered to the

customers and the best category which

has the most capability to predict the

software defects are tried to find while

comparing them based on software

quality metrics which are accuracy,

precision, recall and F-measure. We

carry out this experimental study with

four NASA datasets which are PC1,

CM1, KC1 and KC2. These datasets are

obtained from public PROMISE

repository. The results of this

experimental study indicate that tree-

structured classifiers in other words

ensemble learners which are Random

Forests and Bagging have better defect

prediction performance compared to its

counterparts. Especially, the capability

of Bagging in predicting software

defectiveness is better. When applied to

all datasets, the overall accuracy,

precision, recall and FMeasure of

Bagging is within 83,7-94,1%, 81,3-

93,1%, 83,7- 94,1% and 82,4-92,8%

respectively.For PC1 dataset, Bagging

outperforms all other machine learning

techniques in all quality metric.

However, Naive Bayes outperforms

Bagging in precision and F-Measure

while Bagging outperforms it in

accuracy and recall for CM1 dataset.

Random Forests outperforms all

machine learning techniques in all

quality metrics for KC1 dataset. Finally,

for KC2 dataset, MLP outperforms all

machine learning techniques in all

quality metrics for KC2 dataset. It is

deductive from obtained results that

tree-structured classifiers are more

suitable for softwaredefect prediction.

Moreover, it is recommended to

software companies to utilize tree-

structured classifiers for software defect

prediction due to its performance.

Utilizing these techniques enables them

to save software testing and maintenance

costs by identifying defects in the early

phase of project life cycle and taking

corrective and preventive actions before

they becomes failures. Conducting

additional experimental studies by using

different datasets would be one direction

of future work. These datasets would be

obtained from the open repositories or

software companies. Second direction of

the future work would be conducting an

experimental study by applying deep

learning algorithms additional to these

machine learning algorithms. Bringing

into existence of new attributes by using

Volume 13, Issue 02, Jan 2023 ISSN 2457-0362 Page 23

combination of previous attributes

would be another direction of the future

work. In conclusion, it would be

practical to carry out a case study by

using distinct software quality datasets

obtained from real-life projects of

software companies having different

company sizes.

REFERENCES:

[1] Victor R Basili, Lionel C.

Briand, and Walcelio L Melo. ´ A

validation of object-oriented

design metrics as quality

indicators. IEEE Transactions on

software engineering, 22(10):751–

761, 1996.

[2] EvrenCeylan, F OnurKutlubay,

and Ayse B Bener. Software

defect identification using

machine learning techniques. In

32nd EUROMICRO Conference

on Software Engineering and

Advanced Applications

(EUROMICRO‘06), pages 240–

247. IEEE, 2006.

[3] Karim O Elish and Mahmoud

O Elish. Predicting defect-prone

software modules using support

vector machines. Journal of

Systems and Software, 81(5):649–

660, 2008.

[4] Norman Fenton, Paul Krause,

and Martin Neil. Software

measurement: Uncertainty and

causal modeling. IEEE software,

19(4):116–122, 2002.

[5] LanGuo, Yan Ma, BojanCukic,

and Harshinder Singh. Robust

prediction of fault-proneness by

random forests. In 15th

International Symposium on

Software Reliability Engineering,

pages 417–428. IEEE, 2004.

[6] Taghi M Khoshgoftaar,

Edward B Allen, and Jianyu Deng.

Using regression trees to classify

fault-prone software modules.

IEEE Transactions on reliability,

51(4):455–462, 2002.

[7] Taghi M Khoshgoftaar,

Edward B Allen, John P Hudepohl,

and Stephen J Aud. Application of

neural networks to software

quality modeling of a very large

telecommunications system. IEEE

Transactions on Neural Networks,

8(4):902–909, 1997.

[8] Sunghun Kim, Hongyu Zhang,

Rongxin Wu, and Liang Gong.

Dealing with noise in defect

prediction. In 2011 33rd

International Conference on

Software Engineering (ICSE),

pages 481–490. IEEE, 2011.

