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ABSTRACT 

In physics, group theory serves as a fundamental tool for describing the symmetries and 

conservation laws governing the behavior of particles, fields, and physical systems. Symmetry 

principles based on group theory, such as the principles of relativity and gauge symmetry, 

underlie the formulation of fundamental theories in physics, including classical mechanics, 

quantum mechanics, electromagnetism, and particle physics. Group representations and 

symmetry operations play a crucial role in quantum mechanics, where they describe the 

behavior of wave functions, operators, and observables under rotations, translations, and other 

transformations. In quantum field theory, group theory is used to classify particle states, 

analyze scattering processes, and formulate gauge theories that describe fundamental 

interactions between particles. In chemistry, group theory provides a systematic approach to 

analyzing the symmetries and properties of molecules, crystals, and chemical reactions. The 

symmetry of molecules is described by molecular point groups, which are classified according 

to the symmetries of their molecular geometry and electronic structure. Group theory allows 

chemists to predict the spectroscopic properties, vibrational modes, and electronic transitions 

of molecules based on their symmetry properties, leading to insights into their stability, 

reactivity, and optical behavior. Moreover, group theory is essential for understanding 

crystallography, where it is used to classify crystal structures, determine lattice symmetries, 

and analyze diffraction patterns. Furthermore, group theory has applications beyond 

mathematics, physics, and chemistry, extending into fields such as computer science, 

engineering, and cryptography. In computer science, group theory is used in cryptography to 

develop secure encryption algorithms based on mathematical group operations, such as 

modular arithmetic and elliptic curve cryptography. In engineering, group theory finds 
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applications in signal processing, control theory, and image recognition, where it is used to 

analyze the symmetries and patterns in signals, systems, and data sets. Moreover, group theory 

has applications in music theory, where it is used to analyze musical symmetries, harmonies, 

and compositions. 

KEYWORDS: Conjugacy Classes, quantum mechanics, encryption algorithms, mathematical 

group operations 

INTRODUCTION 

Moreover, the symmetry-adapted basis 

provides a systematic framework for 

constructing basis functions that transform 

according to the irreducible representations 

of the molecule's symmetry group. This 

involves decomposing the molecular wave 

function into irreducible representations 

and constructing basis functions that 

transform according to each irreducible 

representation. The choice of basis 

functions depends on the molecular 

symmetry and the desired level of accuracy, 

with common choices including atomic 

orbitals, Gaussian-type orbitals, or Slater-

type orbitals. By selecting appropriate basis 

functions that transform according to the 

irreducible representations of the 

molecule's symmetry group, the symmetry-

adapted basis ensures that the quantum 

mechanical calculations are compatible 

with the molecular symmetry, leading to 

more accurate and reliable results. 

Furthermore, the symmetry-adapted basis 

facilitates the analysis and interpretation of 

quantum mechanical calculations by 

providing a natural framework for 

understanding the symmetry properties of 

molecular systems. The irreducible 

representations of the molecule's symmetry 

group describe the distinct ways in which 

the molecular wave function transforms 

under symmetry operations, leading to 

symmetry labels that characterize the 

molecular orbitals, electronic states, and 

vibrational modes. By analyzing the 

symmetry properties of the molecular wave 

function, researchers can gain insights into 

the electronic structure, chemical bonding, 

and spectroscopic properties of molecules, 

as well as predict their reactivity, stability, 

and behavior in chemical reactions. 

Additionally, the symmetry-adapted basis 

is instrumental in solving quantum 

mechanical problems involving molecular 

vibrations, rotations, and electronic 

transitions. In vibrational spectroscopy, for 

example, the symmetry-adapted basis 
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allows for the efficient calculation of 

vibrational modes and selection rules by 

exploiting the symmetry properties of the 

molecular potential energy surface. In 

rotational spectroscopy, the symmetry-

adapted basis enables the systematic 

analysis of rotational states and selection 

rules, leading to the prediction and 

interpretation of rotational spectra. In 

electronic spectroscopy, the symmetry-

adapted basis facilitates the calculation of 

electronic transition energies and oscillator 

strengths by constraining the electronic 

wave function to transform according to the 

irreducible representations of the molecular 

symmetry group. 

Moreover, the symmetry-adapted basis 

plays a crucial role in computational 

chemistry methods such as Hartree-Fock 

theory, density functional theory, and 

many-body perturbation theory. In these 

methods, the molecular wave function is 

expanded in terms of a basis set, and the 

electronic structure and properties of the 

molecule are determined by solving the 

Schrödinger equation within this basis set. 

By using a symmetry-adapted basis, 

researchers can significantly reduce the 

computational cost of these methods and 

obtain more accurate results, particularly 

for large or complex molecular systems. 

The symmetry-adapted basis also allows for 

the systematic improvement of basis sets by 

adding higher-order basis functions that 

capture additional correlation effects or 

polarization effects, leading to higher 

accuracy in quantum mechanical 

calculations. 

The symmetry-adapted basis represents a 

powerful and versatile tool in quantum 

chemistry and computational chemistry, 

enabling the efficient and accurate 

simulation of molecular systems. By 

exploiting the symmetry properties of 

molecular systems, the symmetry-adapted 

basis reduces the computational cost of 

quantum mechanical calculations and 

provides a systematic framework for 

understanding and analyzing the electronic 

structure, chemical bonding, and 

spectroscopic properties of molecules. 

Whether in vibrational spectroscopy, 

rotational spectroscopy, electronic 

spectroscopy, or computational chemistry 

methods, the symmetry-adapted basis plays 

a central role in advancing our 

understanding of molecular systems and 

their behavior in diverse chemical and 

physical environments. 

BACKGROUND OF GROUP THEORY 

AS LINEAR ALGEBRA 

Group theory has a close relationship with 

linear algebra, and many concepts and 
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techniques from linear algebra can be 

applied to the study of groups. Here are 

some ways in which group theory can be 

viewed through the lens of linear algebra: 

• Matrix Groups: Groups can be 

represented as collections of 

matrices with specific algebraic 

properties. For example, the general 

linear group GL(n, F) consists of all 

invertible n x n matrices over a field 

F. The special linear group SL(n, F) 

consists of all n x n matrices with 

determinant 1. These matrix groups 

have natural connections to linear 

transformations and can be studied 

using linear algebra techniques. 

• Group Representations: A group 

representation is a homomorphism 

that maps group elements to 

invertible matrices. The 

representation associates each 

group element with a matrix, and 

the group operation is preserved 

through matrix multiplication. 

Group representations allow us to 

study groups by analyzing the 

corresponding matrices and their 

properties. Representation theory is 

a branch of mathematics that 

explores the properties and 

applications of group 

representations. 

• Character Theory: Character theory 

is a powerful tool in the study of 

group representations. The 

character of a group representation 

is a function that assigns each group 

element a complex number based on 

the trace of the corresponding 

matrix. The characters’ capture 

important information about the 

representation and provide insights 

into the group's structure and 

properties. 

• Subspaces and Invariant Subspaces: 

In linear algebra, subspaces are 

subsets of a vector space that are 

closed under addition and scalar 

multiplication. Similarly, in group 

theory, subgroups are subsets of a 

group that are closed under the 

group operation. In both cases, the 

concept of closure is fundamental 

and allows for the study of the 

internal structure of the space or 

group. Invariant subspaces in linear 

algebra correspond to subgroups in 

group theory that are preserved 

under certain group actions. 

• Eigenvalues and Eigenvectors: 

Eigenvalues and eigenvectors play a 

central role in linear algebra, 
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representing the characteristic 

properties of linear transformations. 

In the context of group theory, 

eigenvalues and eigenvectors can be 

generalized to group actions. The 

study of eigenvalues and 

eigenvectors in group actions 

provides insights into the 

symmetries and invariant properties 

of the group. 

• Group Rings and Modules: Group 

rings and modules are algebraic 

structures that combine the 

properties of groups and vector 

spaces. A group ring is an algebraic 

structure formed by formal linear 

combinations of group elements, 

with coefficients from a ring. Group 

modules generalize the notion of 

vector spaces, allowing for the 

action of a group on a module. The 

study of group rings and modules 

connects group theory to linear 

algebraic structures. 

• Symmetric and Alternating Groups: 

The symmetric group, denoted by 

Sym(n), consists of all permutations 

of n elements. It has connections to 

permutation matrices in linear 

algebra. The alternating group, 

denoted by Alt(n), is a subgroup of 

Sym(n) that consists of even 

permutations. The properties and 

structures of symmetric and 

alternating groups can be analyzed 

using linear algebraic techniques. 

• Orthogonal and Unitary Groups: 

The orthogonal group O(n) consists 

of all n x n orthogonal matrices, 

which preserve distances and 

angles. The unitary group U(n) 

consists of all n x n unitary matrices, 

which preserve inner products and 

lengths. These groups have 

connections to orthogonal and 

unitary transformations in linear 

algebra and provide a geometric 

perspective on group theory. 

VARIOUS NOTIONS OF 

CONJUGACY 

In group theory, the concept of conjugacy is 

central to understanding the relationship 

between elements within a group. 

Conjugacy arises from the operation of 

conjugation, which involves transforming 

an element of the group by applying a 

similarity transformation using another 

element. There are several notions of 

conjugacy that are commonly discussed in 

the context of groups. Let's explore these 

notions in detail: 
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• Conjugacy of Elements: Two 

elements a and b in a group G are 

said to be conjugate if there exists 

an element g in G such that b = 

gag^(-1). In other words, a and b are 

conjugate if they can be transformed 

into each other by a similarity 

transformation involving g. The 

element g is often referred to as the 

conjugating element. Conjugate 

elements have the same cycle 

structure in permutation groups and 

share many properties and 

characteristics. 

• Conjugacy Classes: The set of all 

elements in a group that are 

conjugate to a particular element a 

is called the conjugacy class of a. It 

is denoted by [a] or Cl(a). 

Mathematically, the conjugacy 

class of a is defined as [a] = {gag^(-

1) | g ∈ G}. Conjugacy classes 

partition the group into subsets of 

elements that are related by 

conjugation. Each conjugacy class 

represents a distinct equivalence 

class under conjugation. 

• Centralizer and Centralizers: The 

centralizer of an element a in a 

group G, denoted by C(a), is the 

subset of G consisting of all 

elements that commute with a. 

Formally, C(a) = {g ∈ G | gag^(-1) 

= a}. In other words, the centralizer 

of a contains all elements in G that 

leave a fixed when conjugated by 

them. The centralizer is itself a 

subgroup of G. The centralizer of an 

element provides important 

information about its conjugacy 

class and the normality of 

subgroups. 

• Normalizer and Normalizers: The 

normalizer of a subgroup H in a 

group G, denoted by N(H), is the 

subset of G consisting of all 

elements that normalize H. An 

element g in G normalizes H if and 

only if gHg^(-1) = H, which means 

that conjugating H by g results in H 

itself. The normalizer N(H) is the 

largest subgroup of G in which H is 

a normal subgroup. Normalizers 

play a significant role in studying 

normal subgroups and factor 

groups. 

• Conjugacy and Normal Subgroups: 

A subgroup H of a group G is said 

to be a normal subgroup if it is 

invariant under conjugation by all 

elements of G. In other words, for 

every g in G and h in H, the element 
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ghg^(-1) is also in H. Normal 

subgroups form equivalence classes 

under conjugacy and have 

important properties, such as being 

kernels of group homomorphisms 

and allowing the formation of factor 

groups. 

• Conjugacy and Group Actions: 

Conjugation can be viewed as a 

group action within a group. Given 

a group G, the conjugation action of 

G on itself is defined as the mapping 

(g, x) ↦ gxg^(-1) for g, x in G. This 

action exhibits properties similar to 

other group actions, such as 

associativity and the existence of an 

identity element. Conjugacy classes 

can be seen as the orbits under this 

group action. 

The notion of conjugacy and its associated 

concepts provide powerful tools for 

understanding the structure and properties 

of groups. They allow for the classification 

of elements based on their transformation 

properties, and they reveal important 

connections between different elements and 

subgroups within a group. Conjugacy 

classes and related concepts have 

widespread applications in various 

branches of mathematics, such as 

representation theory, character theory 

If G is a group and for any a, b ∈ G there 

exists g ∈ G such that a = gbg−1 then we say 

that a is conjugate to b. Also a = gbg−1 is 

equivalent to ag = gb. This motivates to 

define the following in semigroups. 

Definition: Let S be a semigroup and a, b ∈ 

S , then a ∼l b if and only if there exists g ∈ 

S 1 such that ag = gb. 

This notion of conjugacy is called as l-

notion of conjugacy. This relation is always 

reflexive and transitive but it is not 

symmetric in general in an arbitrary 

semigroup. The following example will 

illustrate this fact. 

Example: Let X = {1, 2}, then 

, having the Cayley table as: 

 

Here, I ◦ f = f ◦ h, this implies I∼l h. But, h 

/l I as there does not exists any k ∈ T (X) 

such that h ◦ k = k ◦ I. 



 

Volume 11, Issue 12, Dec 2021                      ISSN 2457 – 0362                                                     Page 1552 

Remark: The relation ∼l gets reduced to 

the universal relation in a semigroup S 

containing zero. Since for any a, b ∈ S , 

there exists 0 in S 1 such that a0 = 0b, this 

implies a ∼l b. 

Again If G is a group and for any a, b ∈ G, 

a = gbg−1 if and only if a = uv and b = vu 

(u = g, v = bg−1). This motivates to define 

the following. 

Definition: Let S be a semigroup and a, b ∈ 

S, then a ∼p b if and only if there exists u, 

v ∈ S 1 such that a = uv and b = vu. 

This relation is called as p-notion of 

conjugacy in semigroups and on an 

arbitrary semi- group S , ∼p⊆∼l and as seen 

in case of ∼l relation, the relation ∼p also 

faces the problem as it is not transitive in 

general. However it is an equivalence 

relation on a free semigroups as proved in 

the following. 

Proposition: The relation ∼p is an 

equivalence relation on a free Semigroup S. 

Proof: 

i. Reflexivity: This follows for any a, 

b ∈ S by taking g = h = 1. 

ii. Symmetry: For any a, b ∈ S , let a 

∼p b, then there exists u, v ∈ S 1 

such that a = uv and b = vu, this 

implies b = vu and a = uv. Thus b 

∼p a and so ∼p is symmetric. 

iii. Transitivity: For any a, b, c ∈ S such 

that a ∼p b and b ∼p c, then there 

exists u1, v1 and u2, v2 ∈ S 1 such 

that 

 

We show that a ∼p c. Let v1 = x1 x2 · · · xn1, 

u1 = y1y2 · · · ym1 , v2 = z1z2 · · · zn2 and u2 

= t1t2 · · · tm2 . Since v1u1 = u2v2, therefore 

x1 x2 · · · xn1 y1y2 · · · ym1 = t1t2 · · · tm2 

z1z2 · · · zn2. From equality of two words, 

we have n1 + m1 = m2 + n2. We have the 

following cases. 

Case (a): If n1 = m2 then m1 = n2. This 

implies xi = ti for all i = 1, 2, · · ·, n1 and yi 

= zi for all i = 1, 2, · · ·m1. This implies v1 

= u2, v2 = u1.  So a = u1v1, c = v2u2 = u1v1.  

This implies a = c and thus by reflexivity a 

∼p c. Hence ∼p is transitive. 

Case(b): If n1 < m2 [n1 > m2]. We prove the 

case when n1 < m2, the other case follow 

on the similar lines. We have m2 = n1 + k 

for some integer k. So we have 
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With these notations, we have v1 = x1 x2 · · 

· xn1 = t1t2 · · · tn1. So, 

 

Again, u1 = y1y2 · · · ykyk+1 · · · ym1 = 

tn1+1tn1+2 · · · tn1+kz1z2zn2 = tn1+1tn1+2 · · · 

tn1+kv2. 

Now, a = u1v1 = tn1+1 tn1+2...tn1+kv2v1 and c = 

v2u2 = v2v1tn1+1tn1+2...tn1+k. So, a∼pc. Hence, 

∼p is transitive. 

AUTOMORPHISM AND INFINITE 

PARMUTAIONS GROUP 

We consider the following for the sets Ω, K 

and Φ, where Φ is the set of constraints of 

members of G to members of K, and the 

group G is the group of permutations of the 

infinite set. 

1. Under the operation of G, K is an 

orbit of non-empty subsets of Ω. 

2. K ∪ {Φ, Ω} under the normal 

Operations ∪ and ∩, it is a Boolean 

algebra. 

3. The union of any three elements of 

K is countable and disjoint. 

4. If X ∈ K and σ ∈ G and X ∩ supp σ 

≠ Φ there is Y ⊆ X in K such that Y 

∩ σ Y = Φ. 

5. If X, Xn, Y, Yn ∈ K are such that X= 

Un∈ ωXn and y= Un ∈ ωYn are disjoint 

unions and ∅n ∈ Φ has domain Xn 

and range Yn for each n, then Un ∈ 

ω∅n ∈ Φ. 

6. If Ω = X1 ∪ X2 = Y1 ∪ Y2 are 

disjoint unions and ∅i has domain Xi 

and range Yi(i= 1,2,....) then ∅1 ∪ ∅2 

∈ G. 

Theorem 

Assume G, Ω and K are the same as in (i). 

Members σ, τ, of G that are not identical to 

one another are conjugates σ1, σ2, σ3 of σ 

such that τ = σ1
-1 σ2 σ3. 

To prove the above theorem, we first of all 

prove the following lemma. 

LEMMA 

Suppose that σ, τ ∈ G and X ∈ K are such 

that X ∩ τX= ∅ and σx = τx for all x ∈ X. 

Then there is θ ∈ G such that τθ-1 σ- 1 θ ∈ Σ 

⊆ G. 

Proof. 

from (4.l)(iii) we find that any T∈K has a 

proper subset S lying in K, and from (4.l)(ii) 
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that T-S also lies in K. There we have the 

following two cases. 

Case 1. σ -1 τ is also the identity on τX. Let 

Y be a proper subset of τX lying in K. By 

(3.l) (iii) we may write Y as the disjoint 

union Un∈ wYn of members of K and we 

also let Zn = Yn for each n. 

Case 2. σ -1 τ is not the identity on τX. Then 

by (3.l)(iv) (and the fact that by (i), τX ∈ K) 

there is Y ⊆ τX such that Y ∩ σ-1 τY =∅. 

Using (iii) to decrease Y if necessary we 

may assume that τX ⊈ Y ∪ σ -1 τY. By (ii) 

and (iii) Y may be written as the disjoint 

union U ∪ V ∪ W of three members of K 

and by (ii), U ∪ W, V ∪ W∈ K. By (iii) we 

may write 

U = Un∈w Un and V = Un∈w Vn where 

Un, Vn ∈ K and the unions are disjoint. We 

let Y0 = U ∪ W, Yn+1 = Vn, Z0 = V ∪ W, 

Zn+1 = Un. Thus for each n, Yn,Zn∈ K. 

Also Y0 ∪ Z0=Un∈w Yn=Un∈wZn=Y and 

Y0 ∩ Z0= W ∈ K. 

 

STABILIZERS OF FINITE SETS 

For the applications of this work we need to 

know that the stabilizers of finite subsets in 

certain infinite permutation groups are 

simple, or at least not too far from being 

simple. In the general case, for a group G 

which need not be simple we may introduce 

the quasi-order ≼ by defining τ ≼ σ to mean 

that τ lies in the normal subgroup generated 

by σ and ask, when this occurs, for the 

minimum n such that τ may be written as 

the product of n conjugates of σ or σ-1. We 

spend the most time addressing this 

question for the stabilizer of a single point 

in the homeomorphism group of Q, Ir, or C. 

The situation for arbitrary finite sets 

follows quite easily from this.  

Continuity is harder to arrange since the 

complement of a singleton is open but not 

closed. 

Let G be a permutation group on the set Ω. 

If these are understood we denote by K(a) 

and K(A) the stabilizer and point wise 

stabilizer, respectively, of Q ∈ Ω and A ⊆ 

Ω . The proof of the “three conjugates” 

result for K(a) is modelled closely on that 

of Theorem 3.1.2 but we require additional 

terminology and a number of preliminary 

results. Let us say that X⊆ Ω abuts a (where 

a⊆ Ω and Ω = Q, Ir, or C) if X is open, a ∉ 

X, and X= X𝖴 {a}. We let L(a) be the 

subgroup of K(a) comprising all σ ∈ K(a) 

which fix pointwise a neighbourhood of a. 

Then L(a) is clearly a proper non-trivial 

normal subgroup of K(a). Theorem 3.2.13 

will show that it is the only such. 

1. Lemma 
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Any two non-empty clopen subsets of Ω are 

homeomorphic. 

Proof. 

This has already been used implicitly in fact 

(for example, in the proof of Theorem 3.8) 

and it is remarked on in [59], but we outline 

a short proof here because of its important 

role in what follows. For Ω = Q it is 

immediate from Sierpinski’s Theorem. In 

fact for Ω = Q or Ir one may show that any 

two non-empty open subsets X and Y of Ω 

are homeomorphic. This is because each of 

X and Y may be written as the disjoint 

union of ℵ0 clopen intervals, since R - Ω is 

dense in R. For C we deduce by 

compactness that any two non-empty 

clopen sets X and Y are finite disjoint 

unions of basic clopen intervals (where the 

“basic clopen” intervals are C, C ∩ [0, ⅓], 

C ∩ [⅔, 1], C ∩ [0, 1/9], etc.). But in C any 

basic clopen interval is homeomorphic to C, 

and C is the disjoint union of an arbitrarily 

large finite number of basic clopen 

intervals, so the result is clear. 

Now each of the spaces Q, Ir, and C is a 

subspace of R, hence a metric space in the 

natural way. If ∅ ≠ X ⊆ Ω we let d(a, X) = 

sup {|a – x| : x ∈ X} (which may equal ∞). 

(A more standard notion of the “distance” 

from a point to a set would perhaps be inf 

{|a – x| : x ∈ X }, but it is sup that we require 

here.) 

2. Lemma 

Suppose that X abuts a. Then X may be 

written as a countable disjoint union of non-

empty clopen sets Xn, such that d(a, Xn) ≤ 

l/n for each n. 

Proof. 

Let (Yn)n∈ω be a sequence of clopen sets 

in Ω each containing a such that Ω = Y0 ⊇ 

Y1 ⊇ Y2 ⊇ .....= and d(a, Yn) ≤ l/n. Then 

for each n, Xn’ = X∩ (Yn – Yn+1) is clopen 

and as a ∈ X, X=Un∈ωXn’. Since a∈X, {n 

: Xn’ ≠ ∅} is infinite, and we let (Xn) 

enumerate the non-empty Xn’ in increasing 

order. 

3. LEMMA 

Suppose that X and Y are sets abutting a. 

Then there is a Homeomorphism from �̅� to 

�̅� fixing a. 

Proof By Lemma 3.2.2 we may write X= 

Un∈ωXn, Y= Un∈ωYn where these are 

disjoint unions of non-empty clopen sets 

and d(a, Xn), d(a, Yn) ≼ l/n. Let 8: X → Y 

p be defined by 

𝜃𝑥 = {
𝜃𝑛𝑥 𝑖𝑓 𝑥 ∈ 𝑋𝑛 𝑠𝑜𝑚𝑒 𝑛

𝑥    𝑖𝑓 𝑥 = 𝑎
 



 

Volume 11, Issue 12, Dec 2021                      ISSN 2457 – 0362                                                     Page 1556 

where θn : Xn → Yn is a homeomorphism 

as provided by Lemma 3.2.1. To check 

continuity we suppose that xm → x as m → 

∞. If x ∈ Xn for some n then as Xn is open, 

xm ∈ Xn eventually, so θxm → θx by 

continuity of θn. If x = a then as each Xn is 

closed, {m: xm ∈ Xn} is finite. Let xm ∈ 

Xn(m) (for those m such that xm ≠ a). Then 

n(m) → ∞ as m → ∞ (where it exists). 

Since d(a, Yn) → 0, also d(a, Yn(m)) → 0 

and |a – θxm| → O showing that θxm → θx 

as required. Similarly θ-1 is continuous. 

4. Lemma 

If X, Y each abut a then so does X 𝖴 Y. 

Proof. 

X 𝖴 Y is open, a ∉ X 𝖴 Y, and X 𝖴 Y = X 

𝖴 Y = X 𝖴 Y 𝖴 {a}. 

5. Lemma 

Zf X abuts a and a ∈ Ω - X- (a} then Ω - X- 

{a} abuts a. 

Proof. 

Ω – X - {a} is open since it equals Ω – X, a 

∈ Ω - X- {a}, and Ω - X- {a} ⊆ Ω - X = Ω 

- X so that in view of the assumption, Ω - 

X- {a} ⊆ (Ω - X- {a}) 𝖴 (a} ⊆ Ω - X- {a} 

showing Ω - X- {a} = (Ω - X- {a}) 𝖴{a}. 

CONCLUSION 

The class equation of a group provides 

information about the number of elements 

in each conjugacy class. It is obtained by 

partitioning the group into its distinct 

conjugacy classes. The class equation can 

give insights into the structure of a group 

and its subgroups. Studying the products of 

conjugacy classes can provide information 

about the structure and subgroups of a 

group. The product of two conjugacy 

classes can be related to the structure of the 

group, such as its normal subgroups, 

quotient groups, or the behavior of elements 

under specific group operations. In 

conclusion, conjugacy classes and their 

products are important concepts in group 

theory. The study of conjugacy classes and 

their products helps to understand the 

structure and properties of groups, 

including their subgroups, quotient groups, 

and group operations. The class equation 

provides a useful tool to analyze the number 

of elements in each conjugacy class. The 

centralizer and normalizer play a crucial 

role in understanding conjugacy classes and 

their interactions within a group. 
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