

A peer reviewed international journal ISSN: 2457-0362

www.ijarst.in

AUTOMAIC_HELMET_DETECTION USING YOLOV3

Anil Kumar Gardasu¹ ,Perumal Sai Santhosh Kumar³, Potluri Rishika² ,Mysagalla Likith⁴, Kodi Yahweh⁵

¹Assistant Professor, CSE, Sreyas Institute of Engineering and Technology, Hyderabad ¹anil02.gardasu@gmail.com ^{2,3,4,5} Final year B.Tech Students, Department of CSE, Sreyas Institute of Engineering and Technology, Hyderabad ²perumalsanthosh11@gmail.com ³kavyapotluri3110@gmail.com ⁴Mysagallalikith@gmail.com ⁵Itzzmeyahweh@gmail.com

Abstract

In the current scenario of the traffic regulations and other measures for the safety on roads and work places, the use of safety equipment are essential parts for precautionary measures from the safety point of view. In the present paper, a technique has been developed for the safety measures to maintain the utmost precaution on road traffic or any other places where the helmets are mandatory to use. In this current paper, the algorithms You Only Look Once version 3 (YOLOv3) and LeNet are used for development of a system that can be used for Helmet detection and recognition of two-wheeler riders. The developed technique is able to detect any type of Helmet and it is tested on several cases. In-case, the rider is found not wearing a helmet, the instance is noted and the results are prepared on the basis of data obtained. The model shows an accuracy of 74% and reaches a speed of 1 FPS using CPU.

KEYWORDS: Helmet, Deep Learning, Detection, LeNet

I.INTRODUCTION

In a developing country like India people prefer two-wheelers or popularly known as motorcycles to cars or other means of transportas they are easily affordable and holds low maintenance charges. According to the Data Intelligence Unit (DIU) in the year 2017there were more than 48,746 motorcyclists died in road mishaps, of this 73.8 per cent of them were found not wearing a helmethence around 35,974 people died from not wearing a helmet. This means that every hour, four motorcyclist riders died in a roadaccident which could've easily been avoided if they had worn a helmet. On September 1, 2019 the government of India introduced the Motor Vehicle Act

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

2019 in which the fine for not wearing a helmet for both the rider and pavilion rider increased from Rs.100 toRs.1000. But even with all these rules enforced people still manage to escape the traffic police and continue to break the rules, making issuing tickets a very tedious job for the traffic police. Automating this process would lessen the workload on the trafficpolice and significantly catch more traffic offenders as compared to before. This would hopefully force people to take traffic rulesand regulations more seriously and help administration in issuing helmet violation tickets more efficiently. We have proposed ahelmet detection system that uses vehicle classification to detect motorcyclists and apply the YOLOv3 algorithm to detect if thepersons wearing a helmet or not. YOLOv3 is fast, has at par accuracy with the best two stage detectors, making this a very powerfulobject detection model, hence a very useful algorithm for our system. We take our video footage from roadside CCTV camerasmaking this system very cost effective

2. LITERATURE SURVEY

Related Work Girshick et al. in their paper introduce R-CNN as an algorithm that is simple and scalable

and the detection increases mean average precision (mAP) by more than 30% as compared with methods that were previously used. These were complex systems which typically combined many low- level image features with high-level context. R-CNN yields a significant performance boost as compared to OverFeat. It is also highly effective for vision problems with small datasets. However, the model is expensive to train and the mean average precision has scope for improvement.

The paper "Fast R-CNN" by Ross Girshick proposed using Fast R-CNN for object detection. This was more precise and built on previous models of R-CNN and SPPnet. Feature map is generated from convolution operation once per image. Fast R-CNN combines the precision of R-CNN family algorithms with improved speed. Object detection with it was still slow with up to 5 frames per secondand expensive to train.

Girshick et al. further improve upon Fast R-CNN introducing Faster RCNN(2017). They proposed a method using Region Proposal Network (RPN) which combines convolutional features with the detection network, providing extremely low cost region proposals. This model overcomes the bottleneck of region proposal computation. It also improves accuracy up to 73.2% mAP in the PASCAL VOC 2007 dataset. It has a small frame rate on GPU of 5fps which is expensive consideringthe real time detection.

In an attempt to further improve the accuracy of R-CNN models, Cai et al. proposed multi-stage objectdetection architecture, the Cascade R-CNN. It contains sequence of detectors which are trained with increasing thresholds of IoU, to

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

avoid more close false positives. Solves the problem of noisy detections due to decreased IoU while also avoiding over fitting caused by increased IoU. The detector architecture can be combined with any two stage detector or act as a single model object detector where improved accuracy was noted however the model has high computational cost further increased due to sequence of detectors.

3. PROBLEM STATEMENT

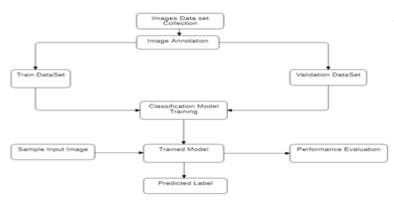
The proposed method is a two stage detector is based on YOLOv3 and image classifier. The objective of this model is to bypass the requirement of sophisticated hardware such as GPUs and enable seamless integration with preinstalled systems. It can be used with video streams from existing surveillance systems. The output is displayed in real-time video stream and is also stored for reference later. This two stage model uses YOLOv3 in the first stage to detect two wheeler riders in traffic followed by a classifier to determine if the rider is wearing a helmet. YOLO is a deep learning based object detection algorithm which has shown promising results in real time applications. Here, the pretrained model provided by the developers of the algorithm has been used which has been trained using the Titan X GPU on the MSCOCO dataset. This model has been used to detect the persons in the input frames. In YOLO, the input image is divided into a grid and predictsbounding boxes for each grid. It uses the darknet53 architecture for feature extraction.

YOLOv3 predicts bounding boxes using anchor boxes which act as dimension clusters. Detection is also made across three scales and three boxes are predicted at each scale which is forwarded to the next layers. Thus it performs better with smaller objects as compared to its predecessors. The YOLOv3 layer detects all the classes in the MSCOCO dataset. This includes all the persons, vehicles, traffic signals, etc. This required a need to filter only the relevant classes. Since the model detects all the persons in the frame, there is a need to filter the detections not required for the application. Thus persons sitting inside large vehicles such as cars, buses and trucks are filtered out. These large vehicles are detected and stored. The model then ensures the persons are not in these large vehicles by checking the centre coordinates of the person with the bounding box of the large vehicle. The final persons found are sent to the classifier stage to check for helmets. The classifier is based in the LeNet architecture. It is small and lightweight and performs well on a CPU. The model is able to classify small scale low resolution images obtained from the first The classifier labels the detection stage. containing helmets and these are displayed in

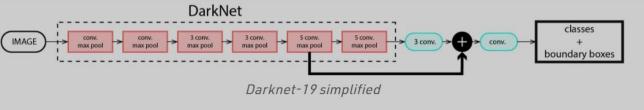
A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

green coloured bounding boxes whereas the detections without helmets are displayed in red coloured bounding boxes. Thus the model is able to detect the riders and classify whether the rider is wearing helmet or not.

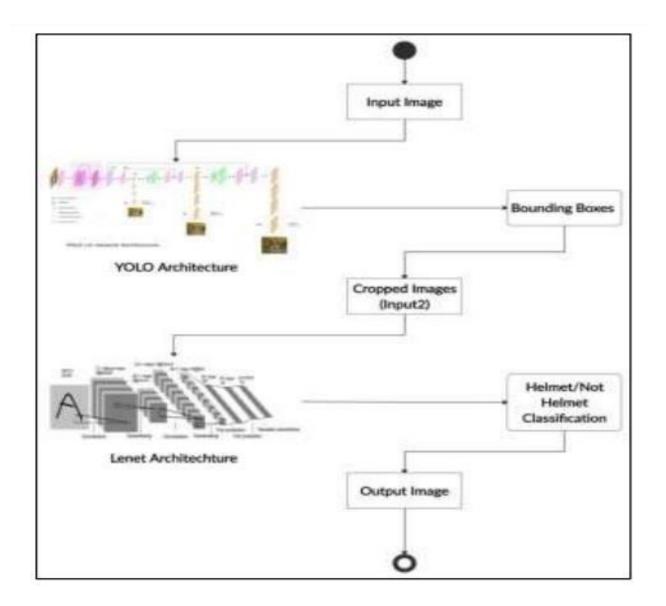
3.1MOTIVATION


With the advancement in the technology, rapid construction of the quality roads is now easier. The availability of better road connections lead to increase in number of vehicles on the road for which it becomes necessary to ensure safety of road users. The safety rules and regulations to be followedneeds to be properly checked in order to reduce road accidents. Road accidents involving two wheelers suffer the maximum damage and chances of survival for the people involved in these accidents are very low. There are several methods that are in use to check the safety rules and regulations. To avoid accidents of two wheelers on the road, there must be a real time detection to check that the rider is wearing helmet or not.

3.2 OBJECTIVE


This project proposes a method to automate the detection of traffic violators and to recognize the riders not wearing helmets using the CNN based algorithm YOLOv3 which is a fast single stage object detection algorithm. It is based on darknet architecture and trained on the MSCOCO dataset capable of detecting 80 classes of object which include persons, motorcycles, bicycles, cars, traffic lights, etc. This algorithm is used to find the two-wheeler riders in a frame. People are detected andchecked if they are on a two wheeler. The cropped bounding box of the detection is then passed onto the next phase. This is an image classifier based on the LeNet architecture trained to classify an image to have a helmet or not. If a rider is not wearing the helmet then the instance is returned and displayed in a different colour than the helmet wearing

4. DESIGNING


4.1Architecture

FLOW DIAGRAM

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

5. IMPLEMENTATION

5.1Video and Image Gathering

Our input datasets were collected from the video surveillance system of Loei Rajabhat University inLoei province, Thailand. A camera we chose to start an experiment is the camera at the front gate of the university. We collected 50 videos of a vehicle passing through the gate, each video is 5 minutes long then the total of all videos length is 250 minutes. After that, we manually classify the image of a biker wearing a helmet and no helmet from the video data. Then we crop an area of a motorcycle with a biker and helmet into one image dataset call "Biker_with_helmet" and the area of a motorcycle with a biker who wears no helmet into another dataset call "Biker_with_no_helmet". The total inputimage we have in "Biker_with_helmet" dataset is 336 and images for "Biker_with_no_helmet" we have 157 images. The total of them is 493 images.

5.2 Image classification

Experiment After gathering 493 images for our training dataset, we split our images into two groups, one for training data and another for test data to use in classification experiment. This

experiment we test them with four CNN models for image classification (VGG16, VGG19, Inception V3, and MobileNets). For the evaluation, we used 10-fold cross validation experiment which we set a number of test data for 10% of the total image. The training networks are trained using Python TensorFlowlibrary, and then we calculate the accuracy and choose two good models to use in image detection step.

5.3 Image Detection

Experiment In this step, we use all 50 videos that we collected to do image detection experiment using SSD technique combine with two CNN models we chose from the previous step. All videos will be tested and calculated the accuracy of the biker with helmet and no helmet detection in the video. We also count a number of undetected motorcyclists to be an error.

5.4 Result Interpretation

The last step, we compare the performance from two previous steps and make the conclusion. The accuracy of the experiments will show the performance of each technique in terms of image

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

classification and image detection.

In their paper "SSD: Single Shot MultiBox Detector" authors Wei Liu et al proposed using SSD or Single Shot Detector for object detection which uses a single deep neural network. It is a fast and accurate object detection algorithm which shows good performance in real time scenarios. For small scale objects, SSD performs worse than Faster R-CNN. The detection of small objects is only possible in high resolution images. However, they consist of low-level features such as color patches or edges. It is less informative for classification. It also runs at 22 FSP which is low compared to other algorithms

Redmon et al. in the paper "You Only Look Once: Unified, Real-Time Object Detection" introduces the YOLO algorithm that has proven to be better and faster for detection of objects. YOLO treats detection as a simple regression problem taking an image as input and learning probabilities of the class and coordinates of the bounding boxes. The image processing of their YOLO model is at the rate of 45 fps and of Fast YOLO version is 155 fps which is almost twice as much as other methods and algorithms available. The authors also improved upon the original algorithm in YOLO9000 (YOLOv2) and YOLOv3[8] which has been able to achieve a large number of object detections. It is very fast and makes less background error than R-CNN methods. This method struggles with very small objects and objects in dense spaces. It also works best with sophisticated hardware.

The authors G. Chandan et al. have proposed the combination of SSD with MobileNet. The combination of MobileNet and Single Shot Detector (SSD) framework gives a fast and efficient method for object detection. The model performs poorly for small object detection.

An enhancement to YOLOv3 was proposed by Kim et al that focuses on detection of vehicles at variousscales using spatial pyramid pooling. They introduced two layers for prediction and before every prediction layer inserted SPP networks. This made the system more robust to various sizes of vehicles. It gives mAP of 84.96 on the DETRAC dataset which shows a much higher accuracy than other vehicledetection approaches. The additional prediction layers result in a decrease in frames processed per second (6-7 fps) as compared to YOLOv3.

Katyal et al approaches the problem of vehicle detection in foggy conditions by pre-processing the image and generates a saliency map using regional covariance. Object detection is then

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

performed using YOLO algorithm on the image. Dehaze algorithm is used to pre-process the image and improve the quality. The system was able to recognise objects in foggy conditions which is not possible with traditional YOLO. It required hardware such as fog sensors.

Guanqing Li in their paper focuses on the real time implementation of YOLO. They present a method which focuses on sample enhancement and transfer learning. They are able to show the generalizationability of sample enhancements and transfer learning. They achieved 87.4% detection rate on 6 different targets. It is accurate and rapid. Recall rate is enhanced at a great extent providing better results. Migration learning is a necessity to gain better results, while training if the sample size is lessthan 50 then has very poor detection.

M. H. Putra in their paper presents a system for detection of real time persons and cars which can be used in Intelligent Car Systems. This is also called Advanced Driver Assistance System (ADAS). Theyhave used YOLO which they have modified to use 7 CNN layers. The paper is able to establish that the reduced complexity YOLO which has high detection accuracy and is capable of real time application and thus is suitable for ADAS use. Reducing the layers results in reduced complexity, this may lead to reduced accuracy but by applying larger grid size the desired results are achieved with good accuracy and speed. It is successfully able to detect small classes too. Although the speed of detection is good yet accuracy is relatively low. The system is only successful if the frame size is large(11x11).

Jing Hu et al used the YOLOv3 model to process real time video feed and detect person wearing helmet or not in construction sites. The worker is recognized using YOLOv3 and the samples are made. These samples go through the YOLOv3 model to detect if they are wearing helmet or not. The model gives 93.5 mAP and 35fps. Fan Wu et al proposed an improvement to the YOLOv3 algorithm by using the feature extraction method. They used the feature extraction method as the backbone of the YOLOv3 model. This improvement gave an increased detection rate of 2.44%.

The work has been developed using YOLOv3 and classified based on LeNet architecture.First we apply object detection algorithm YOLOv3 to obtain the two wheeler riders. The bounding boxes obtained contain all the objects detected in the image belonging to the 80 classes of the MSCOCO dataset and it filters only the classes of persons and large vehicles. These bounding boxes

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

are then cropped from the image and forwarded to the image classification algorithm. The image classifier uses the LeNet architecture and is trained to recognize the helmets from nonhelmets. This is discussed in detail as follows Detection Of Two-Wheeler Rider The first step is to pre-process of the input images. In this, first step the input image is taken through the system from the console with attribute and extracted the image dimensions. In case of videos, the video frames are taken as image for pre- processing. Then it is forwarded to the YOLO model for next process. This is done by creating a blob (Binary Large Object) constructed from the input image. This is followed by non-maxima suppression with subtraction, normalizing, and channel swapping. After a successful creation of blob a forward pass through YOLO model is performed.

This is an important step used to remove redundant bounding boxes. This is a result of detecting the same object multiple times with varying confidence levels. Hence for an accurate detection, non- maxima suppression is required. This suppresses weak overlapping bounding boxes. Localisation of Person YOLOv3 algorithm detects all objects in the MSCOCO dataset. However, the model requires only the person's riding two wheelers. For this, large vehicles such as cars, buses and trucks are detected and stored. The model then filters all the persons detected. It then ensures the persons are not in these large vehicles by checking the centre coordinates of the person with the bounding box of the large vehicle. The cropped images of the persons found are then forwarded to the image classifier. Helmet Vs Non-Helmet Classification The obtained image contains the two-wheeler rider. The next step is to find, the rider is wearing a helmet or not. This is done using an image classifier trained to classify helmets and non-helmet objects. The classifier uses the LeNet architecture. This architecture

performs well for low resolution and small images as it was originally meant to classify handwritten letters. This model trained to classify helmets showed an accuracy of

Libraries:

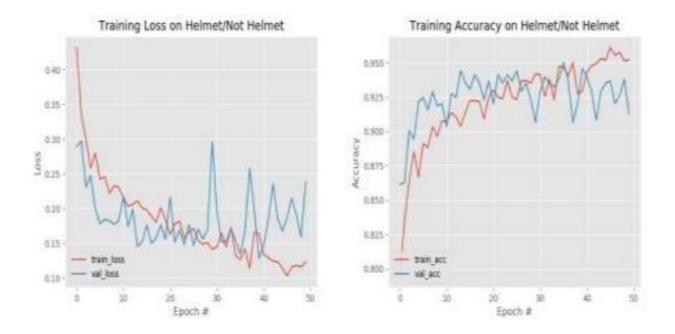
Numpy:

NumPy is a Python package which stands for 'Numerical Python'. It is the core library for scientific computing, which contains a powerful ndimensional array object, provide tools for integrating C, C++ etc. It is also useful in linear

A peer reviewed international journal ISSN: 2457-0362

www.ijarst.in

algebra, random number capability etc. NumPy array can also be used as an efficient multidimensional container for generic data. Now, let me tell you what exactly is a pythonnumpy array.


To install Python NumPy, go to your command prompt and type "pip install numpy". Once the installation is completed, go to your IDE (For example: PyCharm) and simply import it by typing: "import numpy as np".

Pandas:

Pandas are an open-source Python Library providing high-performance data manipulation and analysis tool using its powerful data structures. The name Pandas is derived from the word Panel Data – an Econometrics from Multidimensional data.

In 2008, developer Wes McKinney started developing pandas when in need of high performance, flexible tool for analysis of data.

Prior to Pandas, Python was majorly used for data munging and preparation. It had very little contribution towards data analysis. Pandas solved this problem. Using Pandas, we can accomplish fivetypical steps in the processing and analysis of data, regardless of the origin of data — load, prepare, manipulate, model, and analyze

6.RESULTS

A peer reviewed international journal ISSN: 2457-0362

www.ijarst.in

Training Loss And Accuracy Helmet/No Helmet

Detection of helmet through Surveillance Videos

A peer reviewed international journal ISSN: 2457-0362

www.ijarst.in

Detection of helmet through Live

7. CONCLUSION

In this project the target of the developed model is to perform well for the detection of bike riders and classification to detect the presence of the helmets in real time image and video. In the set target, the developed model reached up-to an accuracy of 74% and a speed of 1fps without GPU. In this, a minor drawback of the current developed model is that, it captures the image of all persons coming in the frame rather than bike riders, this is affecting the accuracy of the designed method because it should be applicable on the bike riders only. This implies that if a rider is not wearing a helmet but carrying it, a false positive is returned as the location of the helmet is not checked with respect to the person. Apossible solution for this error is to use a detection algorithm in the second layer as well, which may compromise the speed and may require more sophisticated hardware.

8.REFERENCES

[1] Ross Girshick, Jeff Donahue, Trevor Darrell, JitendraMalik(2014), "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation." The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580-587.

[2] Girshick, R.B. (2015). "Fast R-CNN." 2015

A peer reviewed international journal ISSN: 2457-0362

www.ijarst.in

IEEE International Conference on Computer Vision (ICCV), 1440-1448.

Lake City, UT, 2018, pp. 6154-6162.

[3] Liu, Wei & Anguelov, Dragomir&Erhan,
Dumitru&Szegedy, Christian & Reed, Scott &
Fu, ChengYang & C. Berg, Alexander. (2016).
SSD: Single Shot MultiBox Detector. 9905. 2137. 10.1007/978- 3-319-46448-0_2.

[4] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), LasVegas, NV, 2016, pp. 779-788.

[5] Redmon, Joseph and Ali Farhadi."YOLO9000: Better, Faster, Stronger." 2017IEEE Conferenceon Computer Vision and Pattern Recognition (CVPR) (2016): 6517-6525.

[6] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017.

[7] Z. Cai and N. Vasconcelos, "Cascade R-CNN: Delving Into High Quality ObjectDetection," 2018 IEEE/CVF Conference onComputer Vision and Pattern Recognition, Salt

[8] Redmon, Joseph and Ali Farhadi."YOLOv3: An Incremental Improvement."ArXivabs/1804.02767 (2018).

[9] G. Chandan, A. Jain, H. Jain and Mohana, "Real Time Object Detection and Tracking Using DeepLearning and OpenCV," 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, 2018, pp. 1305-1308.

[10] K. Kim, P. Kim, Y. Chung and D. Choi, "Performance Enhancement of YOLOv3 by Adding Prediction Layers with Spatial Pyramid Pooling for Vehicle Detection," 2018 15th IEEE InternationalConference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, 2018, pp. 1-6.

[11] S. Katyal, S. Kumar, R. Sakhuja and S. Gupta, "Object Detection in Foggy Conditions by Fusion of Saliency Map and YOLO," 2018 12th International Conference on Sensing Technology (ICST), Limerick, 2018, pp. 154-159.

[12] G. Li, Z. Song and Q. Fu, "A New Method of Image Detection for Small Datasets under the Framework of YOLO Network," 2018 IEEE 3rd

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, 2018, pp. 1031-1035.

[13] Waranusast, R., Bundon, N., Timtong, V., Tangnoi, C., and Pattanathaburt, P. (2013)."Machinevision techniques for motorcycle safety helmet detection. 35–40.

[14] Hu, J., Gao, X., Wu, H., and Gao, S. (2019). "Detection of workers without the helments in videosbased on yolo v3." 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE. 1–4.

[15] F. Wu, G. Jin, M. Gao, Z. HE and Y. Yang,
"Helmet Detection Based On Improved YOLO
V3 Deep Model," 2019 IEEE 16th International
Conference on Networking, Sensing and Control
(ICNSC), Banff, AB, Canada, 2019, pp. 363-368.

[16] M. H. Putra, Z. M. Yussof, K. C. Lim, S. I. Salim,

"Convolutional Neural Network for Person and Car Detection using YOLO Framework", Journal of Telecommunication, Electronic and ComputerEngineering (JTEC).