

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 132

ANIMPROVING QUALITY OF SERVICE IN WIRELESS NETWORKS

USING CONSENSUS ALGORITHM
Dr.R.Baby.Munirathinam.,. M.C.A.,.M..PHIL,.PH.D.,

babyrathinam@gmail.com

Associate.Professor./.Department.of.Computer.Science

MALLA.REDDY.ENGINEERING.COLLLEGE.FOR.WOMEN

Secunderabad,.Telangana,.INDIA.-500.100.

Abstract:
The consensus algorithm has become more common in

contemporary distributed systems as a result of its improved

efficiency in resolving server unreliability. It ensures that

several servers may work together to build a system and that

the system continues to function even if one service point

malfunctions. The widely used distributed consensus

algorithm Raft constantly sacrifices performance in order to

achieve its fundamental goal of comprehensibility. In this

study, we primarily concentrate on the performance issue with

the traditional Raft consensus algorithm, particularly under

conditions of high concurrency. To improve efficiency

through disc flushing and batch asynchronous log replication,

we add a pre-proposal stage to the approach. The trial showed

the improved Raft's method, and this study focuses mostly on

the performance issues with the traditional Raft consensus

process, particularly under conditions of high concurrency. To

improve efficiency through disc flushing and batch

asynchronous log replication, we add a pre-proposal stage to

the approach. The experiment showed that the improved Raft

may increase the system's throughput by 2-3.6 times and its

efficiency for handling parallel requests by at least 20%.

Keywords:

Raft, RAmCloud, Consensus Algorithm, Distributed

system, Asynchronous .

1.Introduction

A group of machines can function as a cohesive unit that can

endure the failure of some of its members thanks to

consensus methods. They are essential in creating dependable

large scale software systems as a result.The consensus

algorithm maintains a replicated log with client supplied a

state machine command. The state machines employ identical

command sequence from the log to process, producing

similar outputs which is used to solve. A separate replicated

state machine is often used to handle large-scale systems with

a single cluster leader such as GFS[8] , HDFS[18] and

RAMCLOUD[23] typically manage leader election and store

configuration data that has to survive all the leader crashes in

a separate replicated state machine and several issues with a

Fault tolerance in distributed systems. Replicated state

machines have examples like Chubby[2] ZooKeeper[11].

Raft shares many similarities with other Consensus

Algorithms such OKI and Liskov’s Replications[29,22] but

it also a few new features:

 Solid Pioneer : Pontoon utilizes a more ground type

of initiatives than other agreement calculations. Log entries

, for instance , only flow to other servers from the leader.

Raft is made easier to comprehend and manage the

replicated log and made simpler as a result.

 Election of leaders:

Leaders are chosen in Raft through the use of the random

timers. This adds just a modest quantity of system to the

pulses previously expected for any agreement calculation,

while settling the clashed quickly and changes in the

membership.

A Novel joint consensus approach is used in Raft’s

mechanism for changing the number of servers in the cluster

when the majorities of the two different configurations

overlap during when the configuration changes, The cluster

continue to function normally because of this replicated state

machines as seen in Figure 1. Each server keeps a record

with a list of commands that is state machine sequentially

executes. Each state machine processes the same set of

commands since each log contains the same commands in

the same order and output sequence because they are

deterministic. This algorithm’s sole responsibility is to

maintain the consistency in the replicated log. The main

characteristics are found in this algorithm for practical

systems.

 .The failure of any two server can therefore to be

tolerated in a typical cluster of five servers, It is assumed

that servers would fail, however they might later recover

from a filed state using stable storage and re-join the

clusters. And they are independent of timing to maintain

consistency.

2. Description of the protocol

The Raft protocol is designed to be without difficulty

understandable thinking about that the maximum popular

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 133

manner to achieve consensus on the allotted structures was the

Paxos, set of rules, which became very tough to apprehend

and enforce. Each person with the basic knowledge and

common place experience can apprehend the essential

elements of the protocol and the research paper published by

the way of Diego Ongaro and John Ouster out. It is a miles

comparatively easy to put into effect than other options, on the

whole the Paxos, due to a more cantered usage of case phase

and assumptions about the disbursed system. Many open

supply implementations of the Raft to be had at the C++ and

Java. The Raft protocol has been decomposed into smaller

sub issues which can be tackled fantastically independently

for higher information, implementation and debugging,

optimizing performance for a greater particularly of the use

case.

 The disbursed machine following the Raft consensus

protocol will remain operational even if minority of the server

fail. For instance, if we have got a five server node cluster , if

2 nodes fails, this device can still function.

 The leader election mechanism in the Raft is so

designed that one node will constantly gain most of the people

votes within the most of the two terms.

 The Raft employs RPC (Remote Procedure Call) to

the votes and sync up the clusters., so the load of the calls

does not fall at the leader node in the cluster now. Raft

changed into design later, so it employes modern day concepts

which have been no longer but understood at the time of the

formulation of the paxos and comparable protocols.

Any node in the cluster can comes to be chief, so it has

fairness . Raft nodes are always be the candidates, followers

ore leaders. Every node begins its life as admirer. Nodes can

agree to take log entries from the leader and cast votes at this

stage. Node stage-promoters to the candidate state over a

period of time without receiving any entries in the candidate

state and ask their follow nodes for the votes. A candidate is

elevated to be the leader if quorum of votes is case infavor of

them . A new log entry must be accepted by the leader , who

must then repeat it to every other follower. All queries must

also be executed on the leader if stale readings are

unacceptable. Describe the protocol that fact that a replicated

log is unbounded raises an obvious question. Raft offers a

method for taking a snapshot of the current state and

compressing the log. The FSM abstraction requires that log

for restoring the state of the FSM, all queries must also be

performed by the leader. A leader then attempts to duplicate

the entry to quorum followers by writing it to reliable storage.

Once the log entry is regarded as committed means, then a

finite state machine can use it. The interface is used to

implement the finite state machine, which application must

result in the same state as that of the old logs. A cluster can

accept fresh log entries once it has a leader and FSM client,

Raft will then be able to delete all the logs that were used to

get the FSM state which was captured at the particular time.

This is done automatically, without user input and limits the

amount of disk space that can be used while also cutting

down the amount of time that logs muse be replayed.

3. Consensus:

In order to comprehend Raft, it is to be consider the challenge

of reaching consensus, when the Raft aims to address multiple

servers are coming to consensus on the same information is

necessary to create fault tolerant distributed systems. Let’s

explain it by few illustrations. It is better to understand the

process, let us first outline the procedure followed when a

client communicated with a server process. The server

received a message from the client and responds with a reply.

The following characteristics are essential for a consensus

procedure tolerating the failures:

 Validity : A value must have been provided by a

another valid process if a process decides (either to read or

writes) it.

 Consensus: Every valid procedure must

occur on the same value.

Termination: Every correct procedure must come to an

end after a number of steps.

Integrity: Any process has the specified value if all the

correct processed reach the same. Now let us assume that

just one client (for the sake of clarity) there are two

different types of systems that could exist. Client

communication takes place in a system with a single server

and no backup in a system with a single server and no

backup. In such a system, reaching consensus is not an

issue.

Figure 1: Visual Single Server Raft.

Multi Server System: The client communicates with a

system of several servers. Then such system comes in two

varieties:

When a client requests a response from one of the many

servers, any of the many servers are expected to

synchronizes with that server. A cluster can accept fresh

log entries once it has a leader.

Asymmetric: Once the leader server can react to the client.

Any of the numerous server may respond to the client and

all the other servers are expected to sync, up with the one

that did

 Symmetric: Any of the numerous servers may respond to

the client, and all servers are expected to synchronize with

the one that did. The leader server synchronizes with the

other servers. For the time being. system like this can be

referred to replicated state machine all of the servers preserve

similar data(shared data) throughout the time. The words

used to a specific servers in the distributed system will now

to be defined. Only the server chosen as the leader that can

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 134

communicate with the client. Each of other server

synchronizes with the leader , there can be only one leader at

a time of process. (perhaps 0, as it will be ex plain later.)

Follower:
After a regular time intervals, the follower server sync their

copies of the data with the leaders. One of the followers can

run leadership in the event that the leader server goes offline

(for any reason).

Candidate: When competing in an election to select the

leader server, the servers may solicit votes from other

servers. As a result , when they ask for votes, they are

referred to as candidates.

Figure.2:.Multiple.Server.Labeled.Raft.Visual.

3. Proposed Model:

Every client operation that the servers’ state machine is This

model refers to a proposal as one that is process-capable. A

thorough and efficient proposal process normally consists of

an event request Invocation (hence referred to as Inv) and an

event response (hence referred to as Res). In the end, the state

machine submits the non-read type Write for each operation

that contains a Write or Read operation. Each task proposal

will be converted into a log as shown in Figure 4 as long as it

is there and can be completed by the state machine. Proposals

can be handled once a response is returned to the consistency

module of the leader node, and for the Inv and Res events,

read operations should return a new value after each read

operation. The Raft system can then handle simultaneous

client requests while maintaining linear consistency. This

entails ensuring a complete order relationship and concurrent

Read/Write requests with the real-time order.

The client A's procedure is depicted in Figure 3(a), from

commencement to response. According to Raft, a system

proposal that satisfies linear consistency must accomplish the

following process.

A parallel client request with linear consistency in Raft is

shown in Figure 3(b). The client A To E starts a parallel

Read/Write request for the same piece of data V at a specific

time, and Raft receives the proposal in Real-Time Order. The

request complies with the following total order relationship, as

depicted in the Figure. After first adding the log to the log

collection and sending Append Entries to the remaining

followers nodes, the leader distributes the log items using

RPC technique. After receiving the requests, the follower

node will also copy the log items to its log collection,

regardless of events like network partition and outages, and

respond to the leader node with an ACK to indicate a

successful append. When the leader receives more than one

Ack (acknowledgement) message from the followers, the state

machine will submit the log and the ACK will be relayed to

other followers nodes to submit, concluding a cluster log

submission. The following proposals can only be handled

after a proposal returns a Response(res), despite the fact that

proposals may be submitted concurrently. In the highly

concurrent scenario, the log items to be processed can be

understood as an infinitely growing task queue. The leaders

wait for the response from half of the nodes before continuing

to send AppendEntries RPC messages to the followers. The

Leader essentially establishes a TCP relationship with the

follower and launches many TCP packets based on the TCP

protocol's sliding window technique when several successive

AppendEntries RPCs are launched. Instead of pausing to

confirm each group, the sender can send multiple packets in a

succession using the sliding window approach before a stop-

and-wait confirmation. The maximum amount of data packets

that may be sent is determined by the window size, and wait

times are longer as the window fills up. A long fat network

(LFN) will grow when several TCP data packets are delayed

in arriving, which causes the data packets to time out and

retransmit. Retransmissions with no purpose add significantly

to network overhead. The response can be appropriately

received by delivering many data packets constantly and not

being retransmitted, provided the window is large enough. If

additional network overheads are not taken into consideration,

the throughput of the network is equal to the amount of data

transmitted each second. Based on this concept, the suggested

system converts the synchronous wait of a continuous append

entries to an asynchronous wait, preventing the stopping of

additional ACKs and enhancing network speed. The solution

to this problem is that a network is considered smooth when

replies to the leader's constant heartbeat confirmation are

prompt since the logs are within a tolerable range prior to out-

of-order sequences occurring. The network throughput is

equal to the quantity of data transmitted per second if

additional network overheads are not taken into account.

This asynchronous processing of logs is done through the

batch. We introduce a pre-proposal phase between the client-

initiated proposal and the leader-analyzing the proposal in

order to pre-process concurrent proposals. The proposal is

loaded utilizing a highly parallel synchronization queue in

FIFO (First in First out) order during this period. Once it starts

processing a proposal, the Leader will sequentially remove

each proposal from the synchronization queue until it reaches

the first read-only request in the queue. Following the

Leader's initial processing of the proposal, each proposal in

the queue will be removed one at a time. The modified

algorithm's premises and goal are a replica state machine.

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 135

According to the original Raft algorithm's principles, the

security mechanism should essentially provide the following

guarantees:

The term number (Term) in the cluster continues to increase

monotonically. Synchronization must be kept going until the

first read-only request is received.

There won't be any byzantine errors because the network

communication between clusters is reliable to pack loss, delay,

network jitter, etc.

There will only ever be one leader chosen for the cluster, and

that leader will always have the same term number. Requests

from clients that are received by other nodes are forwarded to

the leader.

Additionally, if a failure unsafe situation occurs, general

reliable communication like TCP have retransmission

mechanism, with be lost packets will retransmit instantly,

so it is possible to recover in a short time. Although node

unavailability and network locations will arise, it may be

presumed that communication made between the leader

and the other followers is secure and that these issues are

undercontrol.

Figure (a) The process of Proposal Figure (b) The

parallel Process of Proposal

A proposal is any client operation that the server's state

machine is capable of handling. A complete proposal typically

consists of an EventRequest (also known as an Invocation

afterwards) and an EventResponse (also known as Res). The

state machine finally submits a request with the types Writer

or Read and the non-Ready only type write.

The process of a proposal from client A is depicted in Figure

3(a) from the viewpoint of Raft, a system that satisfies the

requirements for linear consistency to accomplish the

following points.

4. Experiments and analysis

The experimental surroundings is as follows:

The server host had 32 GB of memory , the CPU is Intel Xeon

(cascade Lake) Platinum 8269 Y2 Five GHz with 8 cores.

The proposed set of rules is administered in the digital box of

he server, three nodes are simulated, with each node specifies

four GIB memory and a pair of CPU cores, the working

device is Centos, and this system code is programmed in Java.

So that we can evaluate the efficiency of the progressed with

Raft , set of rules , assessment experiment procedure.

 Multithreading changed into and used to ship the concurrent

requests. In general 17 sets of experiment have been executed

for the evaluation, with distinct request concurrency tiers-

from one thousand log entries to up to 13000 log entries. In

total 13000 log entries . The very last effects are proved in

Figure 4 Figure 5 and Table 1 .

 The programme will unavoidably attain the processing

bottlenecks because the concurrency degree rises, or the point

at which the processing velocity is far slower than the task

increments.

The bottleneck is placed around the log concurrency of 12000,

as seen in picture 5. The processing electricity for both the

algorithm will degrade dramatically if the wide variety of

requests exceeds this.Earlier than the bottleneck, it is miles

obvious that the recommended method can asure 20% or

more development over the present algorithm, because the

addition of the batch method allows red for the concurrent

tasks queue , the consoled algorithm over the process time can

adjust to stable even after the bottleneck .

Contrarily, when obligations and the log backlog grow, the

vintage algorithm overall performance policies for safety

within the protocol performance policies for safety only

within the protocol for Rafts .

Through distinctive feature of its is design the Raft protocol

ensures the following protection towards consensus

malfunctions. The very last outcomes are shown in Figure 4 ,

figure5 and table 1 . Table 1 fact the improvement fee of the

stepped forward algorithm in the device the throughput and

log processing time. It is able to be be seen that the proposed

algorithm can at least double the device throughput and the

processing time of the customer request also tobe improved

by way of more than 20%.

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 136

 Table 1 -Performance Improvement Rate

Figure 4:

Figure 5:

Figure 4 and Figure 5 : Performance of throughput of

throughput of with different size of volume

5. Conclusion

Any client operation that the server's state machine can handle

is referred to as a proposal. An EventRequest (also known as

an Invocation later) and an EventResponse (also known as

Res) often make up a complete proposal. Finally, the state

machine sends a request with the types Writer, Read, and non-

Ready only type write.

From the perspective of Raft, a system that satisfies the

requirements for linear consistency to achieve the following

goals, the process of a proposal from client A is shown in

Figure 3(a).

References
[1] Kleppmann, M.: A Critique of the CAP Theorem.

arXiv:1509.05393 (2015) Brewer, E.: Spanner, TrueTime and the

CAP Theorem (2017).

[2] Huang, D., Liu, Q., Cui, Q., et al.: TiDB: a Raft-based HTAP

database. Proc. VLDB Endowment 13(12), 3072–3084 (2020)

[3]Taft, R., Sharif, I., Matei, A., et al.: Cockroachdb: the resilient

geodistributed SQL database. In: Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data, pp.

1493–1509 (2020)

[4] Huang, D., Ma, X., Zhang, S.: Performance analysis of the raft

consensus algorithm for private blockchains. IEEE Trans. Syst. Man

Cyber net. Syst. 50(1), 172–181 (2020)

[5] Mingxiao, D., Xiaofeng, M., Zhe, Z., Xiangwei, W., Qijun, C.: A

review on consensus algorithm of block chain. In: IEEE International

Conference on Systems, Man, and Cybernetics (SMC), (Banff, AB,

Canada), pp. 2567–2572 (2017)

Number.of.log

entries(size/M

S)

Improvement.Rate

Data.

Volume

(size.in.g

roups)

Throu

ghput.

in.MS

Proposal.

Process

Throughp

ut

1 1000 0..537 1.62

2 2000 0..472 1.02

3 4000 0..442 1.238

4 5000 0..483 0.592

5 10000 0.353 1.580

6 12000 0..220 1.354

7. 13000 0.269 1.353

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 137

[6] Wang, G., et al.: Building a replicated logging system with

Apache Kafka. Proc. VLDB Endow. 8(12), 1654–1655 (2015)

[7] Van Renesse, R., Altinbuken, D.: Paxos made moderately

complex. ACM Computer. Survey. 47(3), 36 (2015)

[8] Ongaro, D., Ousterhout, J.: In search of an understandable

consensus algorithm. In: 2014 USENIX Annual Technical

Conference, pp. 305–319 (2014) .

[9] Frömmgen, A., Haas, S., Pfannemüller, M., et al.: Switching

ZooKeeper’s consensus protocol at runtime. In: 2017 IEEE

International Conference on Autonomic Computing (ICAC), pp. 81–

82 (2017) https://github.com/tikv/tikv

[10] Ailijiang, A., Charapko, A., Demirbas, M.: Consensus in the

cloud: Paxos systems demystified. In: 25th International Conference

on Computer Communication and Networks (ICCCN), pp. 1–10

(2016)

[11] Lamport, L.: Time, clocks, and the ordering of events in a

distributed system. In: Concurrency: The Works of Leslie Lamport,

New York, USA, pp. 179–196 (2019)

