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abstract 

There are many different kinds of mechanical and 

biomechanical systems in people's environments, and they may 

come into touch with them in many different ways. Here, we 

use a structure-preserving approach to the simulation of the 

dynamics of a monopodial jumper, who is modelled as a three-

dimensional stiff multibody system with contact. The idea of 

Lagrange d'Alembert, upon which the applied mechanical 

integrator is founded, is modified to account for practical 

constraints. This new variational integrator for multibody 

dynamics maintains the smecticity and momentum maps. 

Instead of relying on a smooth approximation of the contact 

issue through a penalty potential, we address the non-smooth 

problem, which includes the calculation of the contact 

configuration, time, and force, to guarantee the structure's 

preservation and geometric correctness. For this reason, we 

are also curious in the optimum control of the one-legged high 

leap, in addition to the formulation of non-smooth issues in 

forward dynamic simulations. A direct transcribing approach 

(see [14]) is used to solve the optimum control issue by 

recasting it as a restricted optimization problem. 

Introduction 

The human locomotor system is the subject of a 

great deal of biomechanical literature, with many 

studies focusing on walking motions [5, 17]. 

Actions involving leaping, such as those seen in 

[1], are of particular importance here. In our 

simulation, the monopodial jumper is modelled as a 

multi-body system with constraints, and its forward 

dynamics and optimum control issue are simulated 

in a non-smooth fashion. Locomotion on two legs, 

as opposed to four wheels, necessitates simulation 

approaches to deal with the establishing and 

breaking of contact between the foot and the 

ground. The studied contact formulation 

encompasses the notion of perfectly elastic and 

perfectly plastic contacts (for example, see [8]), 

with the latter meaning that the foot maintains 

contact with the ground for a fixed period of time.  

The monopodial jumper model's top half represents 

the torso, while the lower half is made up of two 

stiff bodies joined at the knee. When the knee is 

taken into account, the resulting movement is 

distinct from the technically oriented jumpers 

discussed, for example, in [7, 12]. By include both 

the perfectly elastic and ideally plastic contact 

formulations in the forward dynamic’s simulations, 

the critical times at which contact is established and 

broken may be calculated. By minimizing a cost 

function with a physiologically driven objective, 

the ideally controlled jumper permits actuation at 

the hip and the knee. In the numerical solution, the 

optimum control issue is converted into an 

optimization problem subject to satisfying discrete 

equations of motion, boundary conditions, and 

route restrictions, as shown for example in [10, 18]. 

To prevent the optimization issue from being 

artificially constrained by dictating the time at 

which contact is established or severed, variable 

time steps are employed, with two scaling factors 

being part of the optimization parameters. 

Configuration and motion of a rigid 

multibody system 

For this study, we use the rotation-free formulation 

described in [2] for rigid bodies and in [4] for rigid 

multibody systems to describe the configuration of 

the simulated bodies and hence simulate their 

dynamics. The configuration vector q (t) R 12 for 

the twelfth rigid body is made up of the coordinates 

for its center of mass (t) and the coordinates for the 

right-handed director triad d I (t) for I = 1, 2, and 3. 

The director triad defines the body's spatial 

orientation and must remain orthogonal while in 

motion in the space under consideration. 

period [t0, TN] ensured by six 'internal restrictions' 

gINT (q) = 0 R 6. Different kinds of joints, such as 

revolute or spherical joints, link the rigid bodies in 

multibody systems. A scleronomic and holonomic 

constraint function g(q) R m on the redundant 

configuration variable q R k, where k = 12 times 

the number of bodies, is generated by the 

interconnectedness and stiffness of the bodies. 

Directly acting on the multibody systems is the 

independent generalized force R km, and the 

resultant k-dimensional redundant actuation f(q) R 

k may be calculated using the input transformation 

matrix B T (q) R k(km) and the formula f(q) = B T 

(q). Notably, the transformation matrix is 

dependent on the intercomsection of the rigid 

bodies, and its specifics are detailed in [14]. 

Integration while conserving structure 

in limited mechanical systems 
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The Lagrangian or Hamiltonian formalism may be 

used to explain the dynamics of continuous 

mechanical systems. An integrator that maintains 

the original structure is derived in this context 

using discrete Lagrangian mechanics (for reference, 

see [16]). The time-dependent configuration vector 

q(t) Q is used in a configuration main fold to 

analyse the limited mechanical system. According 

to the method described in [14], the restricted 

Lagrange d'Alembert principle may be discretized 

at the time nodes t=t0, t=t1 = t0 + t, t=Tn = t0 + nt, 

t=TN = t0 + Tn, where NN is the number of time 

intervals, and the resulting discrete configurations 

qn q(Tn) approx. The Lagrange multipliers may be 

approximated by (t) R m if n (Tn). The action 

integral of the continuous Lagrangian over a single 

time interval is approximated by the discrete 

Lagrangian Ld.: Q Q R, as is customary in the 

setting of discrete variational mechanics. Thus, the 

resultant action total must be stationary according 

to the discrete Lagrange-d'Alembert principle. 

 

for all possible combinations of q and n. This 

results in the constrained forced discrete Euler-

Lagrange equations in dimension (k + m). 

 

problems with optimum control 

Finding the state trajectory and force field that will 

take a system from its initial state to a desired 

destination is the goal of optimum control issues. 

End state, or q(t0) = q0, q (t0) = q 0 Simply put, 

q(TN) = qN, and q (TN) = q N. The system under 

investigation satisfies both the equations of motion 

and the required functional. 

 

is minimized under the cost function C (q, q), 

where TQT qQR is a known cost function. The 

optimum control problem is handled by first 

transforming it into a restricted optimization 

problem using a direct transcription approach. 

Approximating the integral of the continuous cost 

function, the discrete objective function is used in 

discretely restricted optimization situations.  

 

subject to the constraints given by the reduced 

discrete equations of motion of the simplistic 

momentum scheme in

. 

In addition to the discrete equations of motion of 

the specific mechanical integrator, further 

constraints, like initial conditions, final conditions 

and possible inequality path constraints can be 

imposed. 

 

 

Leaper who only uses one foot 

The monopodial jumper's three-dimensional design 

was motivated by the human locomotor apparatus. 

In order to better understand the factors that 

contribute to a successful leap, we use a simplified 

model consisting of three rigid bodies (representing 

the lower leg, upper leg, and trunk, respectively; 

see Figure 1). While the hip is represented by a 

spherical joint, the human knee is modelled as a 

revolute joint with the rotation axis specified by the 

unit vector n1 in body 2. The angle between the 

thigh and the calf is less than because, in actuality, 

the allowable angles of anatomical joints are 

limited; for example, in the optimal control issue, 

an inequal its constraint function h3d(q) 0 prohibits 

the human knee from super-extending. As the 

upper body is supported by a prismatically joint, it 

can only move in a direction perpendicular to e3, 

making rotation along this axis impossible. Internal 

limitations are present in the monopodial jumper's 

con strained system, characterized as a 36-

dimensional configuration variable owing to the 

stiffness mint = 18. Since the model is limited by m 

= 31 holonomic constraints and the joint linkages 

create met = 13 external constraints, it is clear that 

m >= 13 is required. Cor 
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Figure 1: Three-dimensional jumper model with 

generalized coordinates and actuations that react to 

k + m = 5 degrees of freedom. 

 

with a force perpendicular to e3, and a translational 

velocity of u 1 R. The calf's relative rotation, 

denoted by the vector R R 3, and the hip's, denoted 

by the vector S R 3, are both rotary in nature (see 

Figure 1 for details). The torques S R 3 and R R 

work at the knee joint to move the hip of the 

monopodial jumper. 

Communication-Based Methodology 

The physics behind totally elastic and perfectly 

plastic connections is addressed inside the forward 

dynamic’s simulation of the monopodial jumper. If 

the contact force is sufficient to keep the foot from 

penetrating the earth, then the jumper will not lose 

their footing. Since the model of a foot's ground 

contact during a leap predicts that the foot will lift 

as soon as the contact force is zero, the foot should 

be released as soon as the contact force changes 

sign. 

Cohesive Contact Elasticity 

Formulation 

For chains of point masses within a box, the 

modelling of fully elastic interactions using a 

variational integrator is carried out in [15], with 

further information available in [6]. Here, the 

distance between the foot and the ground, where 

the ground is the (e1, e2)-plane, is specified by the 

implemented non-penetration condition vc(q) 0 R. 

(see Figure 2). Using the discrete Euler-Lagrange 

equations in Equation (with a constant time step t), 

the forward dynamics simulation determines a new 

configuration qn+1 as long as the non-penetration 

criterion is not broken (1-2). Each time step 

concludes with a check for whether or not the 

inequality constraint holds for the latest 

configuration qn+1. In the event that it is broken, 

the configuration qn+1 is thrown out (for example, 

the dashed configuration in Figure 2), and the 

physically correct contact configuration q must be 

determined. 

 

Fig. 2. Perfectly elastic contact 

Physical quantities of the calf, thigh (taken from 

[19]) and the human torso (taken from [9] with a 

total weight of 64.90 [kg]) 

 

 

 

 

Exhibit Numbers 

In the completely elastic contact formulation, 

energy conservation is a crucial factor. Using a 

straight-leg example, we can see how the energy 

behaves with time. Table 1 displays various 

anthropometric data about the human body, 

including the chest, the legs, and the thighs. 

Starting from a stationary position, the calf's center 

of gravity is located at [0, 0, 0.5] m. This motion 

lasts for 400 s, during which time more than 830 

interactions are recorded. The long-term energy 

behaviour of the algorithm is presented in Figure 3; 

it exhibits a minor fluctuation of the total energy 

(as is common for variational integrators), but the 

method does not squander energy numerically. In 

[11], the completely elastic contact formulation is 

explained in further depth, and another example is 

provided. 
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Fig. 3. Energy evolution for 830 contacts 

Sustaining optimum command of the 

monopodial bounder 

The optimum control problem seeks to determine 

the most efficient path from the start to the end 

states that the jumper may take. Here, the jumper is 

only activated at the hip and knee, unlike the 

aforementioned instances. For the initial state of the 

optimum control issue, the foot is in touch with the 

ground, which is modelled as a completely plastic 

contact. The optimum control issue involves a 

motion with a contact and a flying phase, as shown 

in Figure 10. By the conclusion of the flight phase, 

the maximum leap height must be achieved. 

 

Fig.4 further reduction is achieved by applying the 

nodal reparameterization of the flight phase Fd 

from qn+1=Fd (un+1,qn)(fulfilling the constraints 

g(qn+1) = 0 in 

)). Since this is the case, the contact phase's forced 

discrete equations of motion are likewise reduced 

to a 5-dimensional system. It's important to note at 

this juncture that the aforementioned monopodial 

jumper has two degrees of freedom during the 

collision phase. However, a new highly nonlinear 

nodal reparameterization is needed for the greatest 

possible decrease (involving trigonometric 

functions). The optimiser can function more 

quickly and easily with a somewhat greater number 

of dynamical constraints if they are less nonlinear, 

as has been shown in practice. For forward 

dynamics simulations, the contact force inhibits 

ground penetration, and when the contact force 

reverses sign, the algorithm determines when the 

contact may be released and what configuration it 

should take. Inequality path constraints provide the 

right direction of the contact force, i.e., the correct 

sign of the Lagrange multiplier 3 Sn 0 for n = 1, 2, 

during the contact phase of the optimum control 

problem. However, the contact force is not present 

since it is remultiplied out by the contact null space 

matrix Pc(qn).

. As a result, the Lagrange multiplier associated 

with the contact phase optimum control issue has to 

be recalculated after each time step to ensure it has 

the right sign, indicating that it satisfies the 

inequality route requirements. Multipliers of the 

contact Lagrange may be determined via. 

 

Guaranteed by the boundary constraints h1d (q0, 

p0) = 0 R 2, the initial state of the jumper is q(t0) = 

q 0, p(t0) = p 0 where p 0 R 36 is the initial 

conjugate momentum. To keep the jumper confined 

to the (e1, e3) plane, we employ a path restriction 

function h2d(qn) = 0 such that the only torques 

acting on the jumper are in the e2-direction. The 

release time and the height of a monopodial leap 

are both heavily influenced by the actuation of the 

jumper during the contact period. It is part of the 

optimal control issue to determine the optimum 

contact release time, which is not known in 

advance. The contact release time node tN is 

implemented with a known node number N, but the 

corresponding physical time TN is a variable that 

must be calculated via optimization. Therefore, the 

parameters 1, 2 R (see Figure 10) are scalars that 

are included in the optimization variables, and they 

scale the time steps before and after the contact 

release time. The one-legged hoppers' restricted 

optimisation challenge is solved. 

 

Subject to  
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The final inequalities prevent the time steps 1t and 

2t from becoming too little or too big, respectively, 

during the contact and flight phases, respectively. 

Furthermore, this provides a minimum and 

maximum estimate for the overall duration of the 

manoeuvre. 

Conclusion 

In this study, we look at a variational integrator that 

maintains its original structure. Using the 

straightforward scenario of a one-legged runner as 

an example, we examine the idea of completely 

elastic, and therefore fully plastic, contact 

formulations. Forward dynamics simulations 

account for contact formulations, with the method 

calculating contact duration, contact configuration, 

and force for completely elastic contacts. A 

perfectly plastic contact model would have the foot 

remaining planted until the contact force reversed 

its algebraic sign. In this case as well, the algorithm 

decides when and how to release the contacts. 

Additionally, the optimum control issue of a 

monopodial high leap with a variable time step is 

solved using a direct transcription approach that 

makes use of the variational integrator and 

formulations of the completely plastic contact. 

Since the contact and flight phases may both be 

optimized with two scaling factors, the leaping 

motion is not unnecessarily constrained. 
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