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Abstract—Existing methods for performing face recognition in the presence of blur are based on the convolution model and cannot 
handle non-uniform blurring situations that frequently arise from tilts and rotations in hand-held cameras. In this paper, we propose 
a methodology for face recognition in the presence of space-varying motion blur comprising of arbitrarily-shaped kernels. We model 
the blurred face as a convex combination of geometrically transformed instances of the focused gallery face, and show that the set of 
all images obtained by non-uniformly blurring a given image forms a convex set. We first propose a nonuniform blur-robust 
algorithm by making use of the assumption of a sparse camera trajectory in the camera motion space to build an energy function with 
l1-norm constraint on the camera motion. The framework is then extended to handle illumination variations by exploiting the fact that 
the set of all images obtained from a face image by non-uniform blurring and changing the illumination forms a bi-convex set. Finally, 
we propose an elegant extension to also account for variations in pose. 

Index Terms—Face recognition, non-uniform blur, sparsity, illumination, pose. 

I. INTRODUCTION  

T IS well-known that the accuracy of face recognition 

systems deteriorates quite rapidly in unconstrained 

settings [1]. This can be attributed to degradations 

arising from blur, changes in illumination, pose, and 

expression, partial occlusions etc. Motion blur, in particular, 

deserves special attention owing to the ubiquity of mobile 

phones and hand-held imaging devices. Dealing with camera 

shake is a very relevant problem because, while tripods hinder 

mobility, reducing the exposure time affects image quality. 

Moreover, in-built sensors such as gyros and accelerometers 

have their own limitations in sensing the camera motion. In an 

uncontrolled environment, illumination and pose could also 

vary, further compounding the problem. The focus of this 

paper is on developing a system that can recognize faces 

across non-uniform (i.e., space-variant) blur, and varying 

illumination and pose. 

Traditionally, blurring due to camera shake has been 

modeled as a convolution with a single blur kernel, and the 

blur is assumed to be uniform across the image [2], [3]. 

However, it is space-variant blur that is encountered 

frequently in hand-held cameras [4]. While techniques have 

been proposed that address the restoration of non-uniform blur 

by local space-invariance approximation [5]–[7], recent 

methods for image restoration have modeled the motion-

blurred image as an average of projectively transformed 

images [8]–[12]. 

Face recognition systems that work with focused images 

have difficulty when presented with blurred data. Approaches 

to face recognition from blurred images can be broadly 

classified into four categories. (i) Deblurring-based [13], [14] 

in which the probe image is first deblurred and then used for 

recognition. However, deblurring artifacts are a major source 

of error especially for moderate to heavy blurs. (ii) Joint 

deblurring and recognition [15], the flip-side of which is 

computational complexity. (iii) Deriving blur-invariant 

features for recognition [16], [17]. But these are effective only 

for mild blurs. (iv) The direct recognition approach of [18] 

and [19] in which reblurred versions from the gallery are 

compared with the blurred probe image. It is important to note 

that all of the above approaches assume a simplistic space-

invariant blur model. For handling illumination, there have 

mainly been two directions of pursuit based on (i) the 9D 

subspace model for face [20] and (ii) extracting and matching 

illumination insensitive facial features [21], [22]. Tan et al. 

[23] combine the strengths of the above two methods and 

propose an integrated framework that includes an initial 

illumination normalization step for face recognition under 

difficult lighting conditions. A subspace learning approach 

using image gradient orientations for illumination and 

occlusion-robust face recognition has been proposed in [24]. 

Practical face recognition algorithms must also possess the 

ability to recognize faces across reasonable variations in pose. 

Methods for face recognition across pose can broadly be 

classified into 2D and 3D techniques. A good survey article 

on this issue can be found in [25]. 

Although the problem of blur, illumination and pose are 

individually quite challenging and merit research in their own 

right, a few attempts have been made in the literature to 
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Fig. 1. (a) Focused image, (b) synthetically blurred image obtained by 

applying random in-plane translations and rotations on the focused image, (c) 

point spread functions (PSF) at various locations in the image showing the 

presence of non-uniform blur which cannot be explained by the convolution 

model (best viewed as PDF), and (d, e, f) real blurred images from the dataset 

we ourselves captured using a hand-held camera. 

jointly tackle some of these issues under one framework. Patel 

et al. [26] have proposed a dictionary-based approach to 

recognizing faces across illumination and pose. A sparse 

minimization technique for recognizing faces across 

illumination and occlusion has been proposed in [27], while 

[28], which is based on similar principles, additionally offers 

robustness to alignment and pose. But these works do not deal 

with blurred images. A very recent work [19] formally 

addresses the problem of recognizing faces from distant 

cameras across both blur and illumination wherein the 

observed blur can be well-approximated by the convolution 

model. To the best of our knowledge, the only attempt in the 

literature at recognizing faces across non-uniform blur has 

been made in [17] in which the uniform blur model is applied 

on overlapping patches to perform recognition on the basis of 

a majority vote. However, they do not explicitly model 

illumination changes going from gallery to probe. We would 

like to point out that both [17] and [19] limit their discussion 

to frontal faces. 

In this paper, we propose a face recognition algorithm that 

is robust to non-uniform (i.e., space-varying) motion blur 

arising from relative motion between the camera and the 

subject. Following [19], we assume that only a single gallery 

image is available. The camera transformations can range 

from in-plane translations and rotations to out-of-plane 

translations, out-ofplane rotations, and even general 6D 

motion. An example is shown in Fig. 1. Observe that the blur 

on the faces can be significantly non-uniform. The simple yet 

restrictive convolution model fails to explain this blur and a 

spacevarying formulation becomes necessary. Subsequently, 

we also show how the proposed method can be elegantly 

modified to account for variations in illumination and pose. 

We assume a planar structure for the face [14], [17], [19] 

and use the geometric framework proposed in [8]–[10], [29] to 

model the blurred face as the weighted average of 

geometrically warped instances (homographies) of the focused 

gallery image. The warped instances can be viewed as the 

intermediate images observed during the exposure time. Each 

warp is assigned a weight that denotes the fraction of the 

exposure duration for that transformation. The weights 

corresponding to the warps are referred to as the 

transformation spread function (TSF) [29] in the literature. 

We develop our basic non-uniform motion blur (NU-

MOB)-robust face recognition algorithm based on the TSF 

model. On each focused gallery image, we apply all the 

possible transformations that exist in the 6D space (3 

dimensions for translations and 3 for rotations) and stack the 

resulting transformed images as columns of a matrix. We 

extend the convexity result proved for the simple convolution 

model in [19] to the TSF model and show that the set of all 

images obtained by blurring a particular gallery image is a 

convex set given by the convex hull of the columns of the 

corresponding matrix. To recognize a blurred probe image, we 

minimize the distance between the probe and the convex 

combination of the columns of the transformation matrix 

corresponding to each gallery image. The gallery image 

whose distance to the probe is minimum is identified as a 

match. We do not impose any constraints on the nature of the 

blur. Following [9], [11], we assume that the camera motion 

trajectory is sparse in the camera motion space. This allows us 

to construct an optimization function with l1-norm constraint 

on the TSF weights. Minimizing this cost function gives us an 

estimate of the transformations that when applied on the 

gallery image results in the blurred probe image. Each gallery 

image, blurred using the corresponding optimal TSF, is 

compared with the probe in the LBP (local binary pattern) 

[30] space. This direct method of recognition allows us to 

circumvent the challenging and ill-posed problem of single 

image blind-deblurring. The idea of reblurring followed by 

LBP-based recognition has been suggested in [19], and LBP 

histograms have been shown to work well on blurred faces 

too. We have extended the formulation in [19] to space-

varying situations. 

Furthermore, we propose extensions to the basic framework 

to handle variations in illumination as well as pose. We 

approximate the face to a convex Lambertian surface, and use 

the 9D subspace model in [20] and the bi-convexity property 

of a face under blur and illumination variations in the context 

of the TSF model. Our motion blur and illumination 

(MOBIL)-robust face recognition algorithm uses an 

alternating minimization (AM) scheme wherein we solve for 

the TSF weights in the first step and use the estimated TSF to 

solve for the nine illumination coefficients in the second, and 

go on iterating till convergence. We finally transform (reblur 
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and relight) each gallery image and compare it with the probe 

in the LBP space. Using a rough initial estimate of the pose to 

synthesize gallery images in the new pose, we extend this 

formulation and propose an algorithm to handle motion blur, 

illumination and pose (MOBILAP) for non-frontal faces. The 

new synthesized gallery image is reblurred and relit as before, 

and compared with the probe using LBP. 

Differences With [19]: The DRBF and IRBF methods 

proposed in [19] are restricted to the simplistic convolution 

blur model which is valid only when the motion of the camera 

is limited to in-plane translations. This assumption of uniform 

blur does not hold true in real settings because camera tilts 

and rotations occur frequently in the case of hand-held 

cameras [11]. The algorithms proposed in this paper, in 

contrast, are capable of handling any general motion of the 

camera which sets our work distinctly apart from [19]. In 

addition, we handle pose variations while the discussion in 

[19] is restricted to frontal faces. Our method allows for 

arbitrarily-shaped space-varying kernels across the image 

unlike [19] which seeks to explain the blur using a single PSF 

for the entire image. In fact, our scheme based on the TSF 

model subsumes the work in [19] - for the special case of only 

in-plane translational motion, the TSF reduces to a PSF. 

The work proposed in this paper advances the state-of-

theart in many ways as discussed next. 

• This is the first attempt to systematically address face 

recognition under (i) non-uniform motion blur and (ii) the 

combined effects of blur, illumination and pose. 

• We prove that the set of all images obtained by non-

uniformly blurring a given image forms a convex set. We 

also show that the set of all images obtained from a face 

image by non-uniform blurring and change of 

illumination forms a bi-convex set. 

• We extend our method to non-frontal situations by 

transforming the gallery to a new pose. 

• We propose a multi-scale implementation that is efficient 

both in terms of computation as well as memory usage. 

• We demonstrate superior performance over 

contemporary methods on standard face databases 

(FERET, PIE, Extended Yale B) in the presence of blur, 

illumination and pose variations, as well as a real dataset 

which contains, in addition to these degradations, small 

occlusions and expression changes. 

The organization of the rest of the paper is as follows: We 

review the convolution model for uniform blur in Section II 

and discuss its shortcomings. In Section III, we develop the 

non-uniform motion blur model for faces and propose an 

elegant and efficient scheme for face recognition under 

spacevarying motion blur. Experimental results are given for 

purpose of validation. In Section IV, we incorporate 

illumination and pose into the basic formulation discussed in 

Section III. Section V contains results and comparisons on 

synthetic and real examples involving blur, illumination and 

pose as well. Section VI concludes the paper. 

II. CONVOLUTION MODEL FOR SPACE-INVARIANT BLUR 

As discussed in the introduction, while the convolution 

model is sufficient for describing blur due to in-plane camera 

translations, a major limitation is that it cannot describe 

several other blurring effects (including out-of-plane motion 

and in-plane rotation) arising from general camera motion. In 

order to demonstrate the weakness of the convolution model 

in handling images blurred due to camera shake, we 

synthetically blur the focused gallery image to generate a 

probe, and provide both the gallery image and the blurred 

probe image as input to two algorithms- the convolution 

model which assumes spaceinvariant blur, and the non-

uniform motion blur model (to be discussed in Section III) 

which represents the space-variant blurred image as a 

weighted average of geometrically warped instances of the 

gallery. Next, we compare the reconstruction 

 

Fig. 2. Comparing the reconstructed faces and the reconstruction errors 

(RMS) using the convolution model and the space-variant model. The gallery 

image is shown in column 1. The results are shown in row 1 for space-

invariant blur and rows 2 through 4 for space-variant blur. The RMS errors 

for the convolution model in column 3 and the space-variant model in column 

4, respectively, are- row 1: 0.04, 0.04, row 2: 12.48, 0.05, row 3: 14.88, 0.15, 

and row 4: 15.31, 5.15. (The blurred image in column 2 was used as the 

reference for RMS computation.) 

errors between the probe and the gallery reblurred using the 

camera motion estimated by both the methods. This 

experiment is performed for different camera motions as 

shown in Fig. 2 - row 1: in-plane translations, row 2: in-plane 
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translations and rotations, row 3: out-of-plane rotations, and 

row 4: full 6D blur. The reconstructed faces as well as the 

RMS errors are also shown in Fig. 2. Note that there is no 

change in illumination or pose between the gallery and the 

probe, and only the blur has to be accounted for. Observe that 

except for in-plane translations (row 1), where, as expected, 

the RMS is the same for both the models, in all the other 

cases, the space-variant motion blur model gives significantly 

smaller RMS error than the convolution model. Note that the 

RMS value is smaller than one, except for 6D motion (row 4) 

for which it is marginally higher as our algorithm needs to 

search through a very large set of transformations. 

III. MOTION BLUR MODEL FOR FACES 

The apparent motion of scene points in the image will vary 

at different locations when the camera motion is not restricted 

to in-plane translations. In such a scenario, the space-varying 

blur across the image cannot be explained using the 

convolution model and with a single blur kernel. In this 

section, we present the space-variant motion blur model [8]–

[10], [29] and illustrate how this model can explain geometric 

degradations of faces resulting from general camera motion. 

Later, we propose an optimization algorithm to recover the 

camera motion. 

Let f : R2 → R denote the focused gallery face captured by a 

still camera. Assume the origin to be the camera center and let 

X = [X Y Z]T denote the spatial coordinates of a point on the 

face. Let the corresponding image coordinates be x = v
Z

X and y 

= v
Z

Y , where v denotes the focal length of the camera. The 

projection of X on the image plane can be represented as x = 

KvX, where Kv = diag(v,v,1). To get the image coordinates (x, 

y), the standard practice is to express x in homogeneous form 

i.e., scale x by its third element. At each instant of time τ 

during exposure, the coordinates of the 3D point X changes to 

Xτ = RτX + Tτ due to relative motion between the camera and 

the subject. Here, Tτ = [TXτ TYτ TZτ]
T is the translation vector, 

and Rτ represents the rotation matrix parameterized in terms of 

the angles of rotation θX, θY and θZ about the three axes using 

the matrix exponential 

 ⎡ 0 −θZτ θYτ ⎤  

Rτ = eτ where τ 
= 
⎣θZτ 0 −θXτ⎦  (1) −θYτ θXτ

 0 

Following prior works in face recognition, [14], [17], [19], we 

too model the face by a flat surface i.e., all the points are at a 

distance do from the camera. Therefore, the depth is constant, 

and the point xτ, at which Xτ gets projected in the camera, can 

be obtained through a homography Hτ as xτ = Hτx where 

 Hτ = Kv Rτ + 
1  

[ ] −1 

Tτ 0 0 1 Kv (2) do 

If gτ denotes the transformed image (due to relative motion) 

captured at time instant τ, then we can write gτ(Hτx) = f (x), or 

alternately, gτ(x) = f (Hτ−
1
x) where Hτ−

1 denotes the inverse of 

Hτ. The arguments of f in f (Hτ−
1
x), which are the image 

coordinates, correspond to the first two elements of Hτ−
1
x (a 3 

× 1 vector) expressed in homogeneous form. We follow this 

convention throughout the paper. Now the blurred face g can 

be interpreted as the average of transformed versions of f 

during exposure. Therefore, the intensity at an image point x 

on the blurred face is given by 

 = 1 Te −1x)dτ (3) 

g(x)f (Hτ 

Te 0 

where Te is the total exposure duration. 

The blurred face can be more appropriately modeled in 

terms of the gallery face by averaging it over the set of 

possible transformations resulting from the relative motion 

between the camera and the subject. Let T denote this set of 

all possible transformations. Let hT : T → R+, called the 

transformation spread function (TSF), denote a mapping from 

T to non-negative real numbers. The value of the TSF, hT (λ), 

for each transformation λ ∈ T, denotes the fraction of the total 

exposure duration for which the camera stayed in the position 

that caused the transformation Hλ−
1 on the image coordinates. 

Hence, λ∈T hT (λ) = 1. Note that the term λ denotes the 

transformation parameters corresponding to the homography 

matrix Hλ−
1. The blurred image can be equivalently written as 
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an average of warped versions of f weighted by the TSF, hT , 

i.e., 

g(x) =  hT (λ) f (Hλ−
1
x)dλ (4) λ∈T 

Observe that a single TSF using (4) is sufficient to describe 

the observed space-varying blur. When the motion is confined 

to 2D translations, the TSF will have non-zero weights only 

for the in-plane translational components and will be identical 

to the PSF i.e., the convolution model for the blur is a special 

case of the space-varying motion blur model. 

In practice, the TSF is defined on the discrete 

transformation space T and can be considered as a vector in 

RNT where NT is the total number of transformations present in 

T. NT is controlled by the number of translation steps along 

each axis as well as the number of rotation steps about each 

axis. Hence, 

hNTT(λ=k)NT≥x ×0 NforTy ×k N=Tz 1×,2N,...,θx × NNθTy ×. In the 

discrete domain,Nθz , k
N

=T
1 hT (λk) = 1, 

(4) can be written as 

NT 

 g(r,c) = hT (λk) f (Hλ
−

k
1[r c 1]T )) (5) 

k=1 

where g(r,c) and f (r,c) represent the pixel intensity at (r,c) for 

the discretized blurred image and latent image, respectively. If 

g, f represent the blurred image and the latent image, 

respectively, lexicographically ordered as vectors, then (5) can 

be expressed in matrix-vector notation as 

 g = AhT such that hT ≥ 0,||hT||1 = 1. (6) 

where A ∈ RN
×

NT is the matrix whose NT columns contain 

warped copies of f, hT denotes the vector of weights hT (λ), and 

N is the total number of pixels in the image. The warped 

versions of f are obtained by applying the homography matrix 

Hλ−
1 corresponding to each of the NT transformations on the 

gallery image. From (6), the set of all blurred images obtained 

from f can be written as 

 B {AhT|hT ≥ 0,||hT||1 = 1} (7) 

Proposition 1: The set of all images B obtained by blurring 

an image f using the TSF model is a convex set. Moreover, this 

convex set is given by the convex hull of the columns of the 

matrix A, where the columns of A are warped versions of f as 

determined by the TSF. 

Proof: Let g1 and g2 be elements from the set B. Then 

there exist TSFs hT1 and hT2, both satisfying the conditions hTi 

≥ 0 and ||hTi||1 = 1, i = 1,2 such that g1 = AhT1 and g2 = AhT2. 

To show that the set B is convex, we need to show that for any 

γ satisfying 0 ≤ γ ≤ 1, g3 = γg1+(1−γ)g2 is an element of B. Now 

g3 = γg1 + (1 −γ)g2 

= γAhT1 + (1 −γ)AhT2 

= A(γhT1 + (1 −γ)hT2) 

 = AhT3 (8) 

Here hT3 is non-negative and sums to one, and hence g3 is an 

element of B. Thus, B is a convex set defined as 

 {AhT|hT ≥ 0,||hT||1 = 1}, (9) 

which, by definition, is the convex hull of the columns of A.

 Note that hT is sparse since for motion blur only a 

fraction of the total poses NT will have non-zero weights [29]. 

We make use of this fact to build the following energy 

function 

E(hT) = ||g −AhT||  

 subject to hT ≥ 0. (10) 

The optimization problem in (10) can be solved using the 

nnLeastR function of the Lasso algorithm [31] which 

considers the additional l1-norm and non-negativity 

constraints. This energy function when minimized provides an 

estimate of the transformations that must be applied to the 

gallery image to produce the blurred image. 

A. Multiscale Implementation 

Since we are fundamentally limited by the resolution of the 

images, having a very fine discretization of the transformation 

space T leads to redundant computations. Hence, in practice, 

the discretization is performed in a manner that the difference 

in the displacements of a point light source due to two 

different transformations from the discrete set T is at least one 

pixel. It should be noted that since the TSF is defined over 6 

dimensions, doubling their sampling resolution increases the 

total number of poses, NT , by a factor of 26. As the number of 

transformations in the space T increases, the optimization 
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process becomes inefficient and time consuming, especially 

since only a few of these elements have non-zero values. 

Moreover, the resulting matrix A will have too many columns 

to handle. Following [9], we resort to a multiscale framework 

to solve this problem. We perform multiscaling in 6D (instead 

of 3D as in [9]). We select the search intervals along each 

dimension according to the extent of the blur we need to 

model, which is typically a few pixels for translation and a 

few degrees for rotation. 

The idea is to start from a coarse representation of the 

image and the TSF, and repeatedly refine the estimated TSF at 

higher resolutions. Downsampling a blurred image by a 

certain factor reduces the amount of pixel displacements due 

to camera translation along X and Y axes by the same factor, 

and if the focal length of the camera is large enough, it has the 

same effect on the pixel displacements due to camera rotation 

aboutX and Y axes. Hence, downsampling the images also 

reduces the space of allowed transformations.1 

We first build Gaussian pyramids for both the focused and 

blurred images. At the coarsest scale, the matrix A is built for 

the whole transformation space T. But it is to be noted that the 

search intervals for the TSF are reduced depending on the 

downsampling factor. The TSF hT is estimated by minimizing 

equation (10). We then upsample hT to the next scale using 

bilinear interpolation, and find the non-zero elements of this 

upsampled and interpolated TSF. Also, using a suitably 

chosen threshold, we remove insignificant values resulting 

from the interpolation process. This gives us several 6D 

nonzero regions inside the transformation space. When 

finding the optimal hT at the next scale, we only search for 

valid homographies which lie within these non-zero regions. 

This corresponds to discarding many columns of A, reducing 

both the computation and memory demands of the search 

process. We repeat this procedure at each scale, until the 

optimal TSF at the finest resolution is found. The 

improvement in speed that accrues is discussed in Section III-

C. 

B. Face Recognition Across Blur 

Suppose we have M face classes with one focused gallery 

face fm for each class m, where m = 1,2,..., M. Let us denote 

the blurred probe image which belongs to one of the M classes 

by g. Given fms and g, the task is to find the identity m
∗∈ 

{1,2,..., M} of g. Based on the discussions in 

Section III, the first step is to generate the matrix Am for each 

gallery face. Then, since g belongs to one of the M classes, it 

can be expressed as the convex combination of the columns of 

                                                        
1
 Translation along and rotation about the Z-axis remain unchanged after 

downsampling the image. 

one of these matrices. Therefore, the identity of the probe 

image can be found by minimizing the projection error of g 

onto {Am}s. The reconstruction error dm can be obtained by 

solving 

dm = min||g −AmhT||||hT||1 
hT 

 subject to hT ≥ 0. (11) 

One could compute dm for each m = 1,2,..., M and assign g the 

identity of the gallery image with the minimum dm. Note that 

in (11), all the pixels receive equal weight and influence the 

TSF estimation step equally. But not all regions in the face 

convey the same amount of information. Following [19], we 

modify the above equation by introducing a weighting matrix 

W (which weighs different regions in the face differently) 

when computing the reconstruction error between the probe 

image and the gallery images. Equation (11) then becomes 

dm  AmhT) ||hT||1 

 subject to hT ≥ 0 (12) 

where W (a diagonal matrix) is learned following the 

procedure outlined in the appendix of [19]. This matrix has 

the highest weights for regions around the eyes and de-

emphazises the mouth and cheeks. 

It must be mentioned that the quantity dm is not preferable 

as a metric for face recognition because of its sensitivity to 

even small pixel misalignments. Instead, we use Local Binary 

Patterns (LBP) [30], which are reasonably robust to alignment 

errors, for the recognition task. For this purpose, we first 

compute the optimal TSF hTm for each gallery image by 

solving (12), i.e., 

hTm = argmin||W(g −AmhT) ||hT||1 
hT 

 subject to hT ≥ 0. (13) 

Next, we blur each of the gallery images with the 

corresponding optimal TSFs hTm. For each blurred gallery 

image and probe, we divide the face into non-overlapping 

rectangular patches (details of the patch sizes can be found in 

[19]), extract LBP histograms independently from each patch 

and 
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from the TSF intervals listed in Setting 1 - Setting 5 of Section III-C. 

 

concatenate the histograms to build a global descriptor. The 

intuition behind dividing the image into blocks is that the face 

can be seen as a composition of micro-patterns, and the 

textures of the facial regions are locally encoded by the LBP 

patterns while the whole shape of the face is recovered by the 

construction of the global histogram i.e., the spatially 

enhanced global histogram encodes both the appearance and 

the spatial relations of facial regions. We then perform 

recognition with a nearest neighbour classifier using Chi 

square distance [16] with the obtained histograms as feature 

vectors. The steps are outlined in Algorithm 1. An alternative 

approach would be to use the optimal TSFs hTm to perform a 

non-blind deblurring of the probe. However, we found that, 

deblurring artifacts introduced in this process tend to 

significantly reduce the recognition accuracy (by almost 15% 

to 20%) which suggests that reblurring the gallery is 

preferable to deblurring the probe. 

C. Experiments 

We evaluate the proposed algorithm NU-MOB on the 

standard and publicly available FERET database [32]. Since 

this database contains only focused images, we blur the 

images synthetically to generate the probes. The camera 

motion itself is synthesized so as to yield a connected path in 

the motion space. The resulting blur induced mimics the real 

blur encountered in practical situations. In all the experiments 

presented in this paper, we use grayscale images resized to 64 

× 64 pixels and we assume only one image per subject in the 

gallery. 

To evaluate our algorithm on different types and amounts of 

blur, we synthetically blur the face images with the TSF 

model using the following five blur settings: 

Setting 1 (S1): in-plane translations, Setting 2 (S2): in-plane 

translations and rotations, Setting 3 (S3): out-of-plane 

rotations, Setting 4 (S4): out-of-plane translations, and Setting 

5 (S5): full 6D blur. We select the transformation intervals on 

the image plane, both for generating synthetically blurred 

images and recognizing them, as follows: in-plane translations 

range = −4 : 1 : 4 pixels, out-of-plane translations range = 0.8 : 

0.01 : 1.2, in-plane rotations range = −2° : 1° : 2°. The focal 

length is set to 200 pixels which is in line with the width of 

the image (64 pixels), and out-of-plane rotations range is 

selected as = − ° : 13
° : °. 

The transformation intervals are chosen such that synthetically 

blurring a 64 × 64 pixel image using transformations lying in 

these intervals results in moderate to heavy blur which renders 

it a challenging problem from a face recognition perspective. 

Note that the matrix Am ∈ RN
×

NT in (13) has 4096 rows equal to 

the number of pixels in the image, while the number of 

columns NT is determined by the blur setting. For example, in 

the case of Setting 2 which has in-plane translations and 

rotations, NT = (Number of translation steps along X-axis) × 

(Number of translation steps along Y-axis) × (Number of 

rotation steps about Z-axis) =(−4 : 1 : 4 pixels along X-axis) × 

(−4 : 1 : 4 pixels along Y-axis) × (−2° : 1° : 2° about Z-axis) = 9 

× 9 × 5 = 405. The calculation of 

NT proceeds along similar lines for the remaining four settings, 

and the value of NT is 81 for S1 and S3, 41 for S4, and 

1345005 for S5. Sample synthetically blurred probe images 

for the five different blur settings are shown in Fig. 3. In the 

randomly generated TSFs, the number of non-zero 

homographies is chosen to be a small fraction of the total 

number of homographies in the TSF space. This number 

ranges from 10 for Settings 3 and 4, to 15 for Setting 1, and 25 

for Settings 2 and 5. 

To evaluate our NU-MOB algorithm, we use the ba and bj 

folders in FERET, both of which contain 200 images with one 

image per subject. We use the ba folder as the gallery. Five 

 

Fig. 3. Sample images from ba and bj folders in the FERET database. (a) Gallery, (b) probe, (c)-(g) probe blurred synthetically using random transformations 
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different probe sets, each containing 200 images, are obtained 

by blurring the bj folder using the settings mentioned above. 

(See Fig. 3.) The lighting and the pose are the same for both 

gallery and probe since the objective here is to study our 

algorithm‟s capability to model blur. Notice, however, that 

small facial expression changes exist between the gallery and 

the probe, but the weighting matrix W in (13) makes our 

algorithm reasonably robust to these variations. We set the 

number of scales in the multiscale implementation to 3 as it 

offered the best compromise between running time and 

accuracy. 

We also compare our results with several recently proposed 

face recognition techniques - S.Nos. 1(a), 2 through 9 in Table 

I. While we select methods 1(a), 2 through 4 for 
TABLE II 

RECOGNITION RESULTS (%) ON THE FERET DATASET USING 

NU-MOB ALONG WITH COMPARISONS 

 

      

      

      

      

      

      

      

      

      

      

their ability to handle blurred faces, S.Nos. 5 and 6 were 

chosen because comparisons with existing methods in [26] 

and [27] suggest that the SRC and the DFR algorithms are 

among the best for classical face recognition applications. We 

also compare using a two-step non-uniform deblur [9] + 

recognize approach in S.Nos. 7 and 8 in Table I since neither 

SRC nor DFR can cope with blur. Yet another two-step 

baseline comparison that uses LBP features extracted from the 

deblurred probe for recognition is provided in S.No. 9. 

Recognition scores were computed for various blur kernel 

sizes ranging from 3 to 13 pixels for the DRBF [19] 

algorithm. We report the best recognition rates in Table II. 

However, we would like to add that the authors in [19] have, 

on their data, reported recognition rates that are, on an 

average, 3 to 4 percent greater using their rDRBF algorithm. 

For comparison with [17] for the space-varying cases in 

Settings 2 to 5, following the discussion in Section 4.1.2 of 

their paper, we divided the image into overlapping patches 

with sizes 75, 50 and 40 percent of the original image, 

performed recognition separately on each patch and used a 

majority vote to calculate the final recognition score. (For 

Setting 1, the algorithm in 4.1.1 of their paper was used.) This 

was repeated for various blur kernel sizes ranging from 3 to 

13 pixels, and the best recognition rates have been reported in 

Table II. In our implementation of the FADEIN algorithm, the 

statistical models for PSF inference were learned from 25 

PSFs which included 

 

Fig. 4. (a) Blurred probe, (b) row 1 - true PSFs at three locations 
(marked by crosshairs in (a)), row 2 - PSFs estimated by our NU-MOB 

algorithm. 

TABLE I 

SUMMARY OF COMPARISON TECHNIQUES. UB: UNIFORM BLUR, NUB: NON-UNIFORM BLUR, I: ILLUMINATION, P: POSE 
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24 motion blur kernels (length = 3,5,7,9,11,13 pixels, and 

angle = 0,0.25π,0.5π,0.75π) and one „no blur‟ delta function. 

Since there is only one image per subject in the current 

scenario, and SRC and DFR work best in the presence of 

multiple images for each subject, to be fair, we provide as 

input to the algorithms in [26] and [27] the nine basis images 

of each subject (obtained using the relighting technique in 

[26]) in the database. Table II shows that our method 

consistently performs better than contemporary techniques, 

and generalizes satisfactorily to all types of camera motion. A 

probe image blurred using Setting 2 is shown in Fig. 4(a). The 

true kernels at three locations marked by crosshairs on Fig. 

4(a) are shown in the first row of Fig. 4(b), while the kernels 

obtained from the TSF estimated by NU-MOB are shown in 

the second. Observe that the estimated PSFs closely resemble 

the true PSFs which indicates that the motion has been 

computed correctly. 

Using the multiscale implementation, we could obtain a 

considerable speed-up of the algorithm. For example, in 

Setting 2, with 200 images in the gallery, while each query 

image without the multiscale approach took an average of 

230.80 seconds (on an 8Gb linux machine with 8 cores 

running Matlab), the multiscale implementation (with number 

of scales set to 3) performed the task in 18.06 seconds. This is 

an order of speed-up. For Setting 5, where the multiscale 

implementation is indispensable, the speed-up is around 25 

times! 

 

Fig. 5. Effect of increasing the blur. (Refer to the text for blur settings along 

the X-axis.) 

1) Effect of Increasing the Blur: We now examine our 

algorithm‟s performance as the extent of the blur is increased. 

The gallery, as before, is the ba folder. We select random 

transformations from the following nine sets of intervals to 

blur the images in the bj folder and generate the probes. The 

ranges for in-plane translations (in pixels) and in-plane 

rotations, respectively, are- (1) 0, 0, (2) [−1 : 1 : 1], 0, 

(3) [−2 : 1 : 2], [−1° : 1° : 1°], (4) [−3 : 1 : 3], 

[−(6)1°[−:5 1:° 1: :1°5], (5)], [−2[−° 4: 1:°1: :2°4], (7)], [−2[−° 

6: :1°1:: 26°]],, 

[−2° : 1° : 2°], (8) [−7 : 1 : 7], [−3° : 1° : 3°], and (9) [−8 : 1 : 8], 

[−3° : 1° : 3°]. It is clear from the plot given in Fig. 5 that our 

algorithm greatly outperforms all other comparison techniques 

as the extent of the blur is increased. 

2) Effect of Underestimating or Overestimating the TSF 

Search Intervals: In all the above experiments, we have 

assumed that the TSF limits are known, and we used the same 

transformation intervals as the ones used for synthesizing the 

blur, while attempting recognition. Although in some 

applications we may know the extent of the blur, in many 

practical settings, we may not. Hence, we perform the 

following experiments to test the sensitivity of our algorithm 

to the TSF search intervals. 

As before, the ba folder of FERET is chosen as the gallery 

and the probe images are generated by blurring the bj folder 

using random transformations lying in the intervals- in-plane 

translations [−2 : 1 : 2] pixels, and in-plane rotations = [−1° : 1° 

: 1°]. We then perform recognition with the following seven 

choices of TSF search intervals for in-plane translations and 

in-plane rotations, respectively- (1) 0, 0, 

(2) [−1 : 1 : 1], 0, (3) [−2 : 1 : 2], [−1° : 1° : 1°], 

[−(4) [−41°: :13°:], (6)4], [−[−212° :: 11° ::122]°,], (5)[−4° [−: 

18° :: 14°]: and8], 

3° : 

(7) [−16 : 1 : 16], [−5° : 1° : 5°]. The experimental results are 

shown in the plot of Fig. 6. Observe that, in case (1), where 

the TSF intervals are set to zero, our method reduces to LBP, 

and the poor recognition accuracy is further testimony to the 

fact that the blur, unless accounted for, will cause classical FR 

algorithms to fail. We note that the recognition rates are 
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Fig. 6. Effect of underestimating or overestimating the TSF search intervals. 
(Refer to the text for blur settings along the X-axis.) 

fairly stable even when the TSF search intervals are chosen to 

be much larger than the true TSF intervals (cases (4)-(7)) i.e., 

our algorithm picks the correct TSF even when the search 

space is large. It can thus be concluded that it is not advisable 

to underestimate the TSF search intervals. 

IV. FACE RECOGNITION ACROSS BLUR, ILLUMINATION, 

AND POSE 

Poor illumination is often an accompanying feature in 

blurred images because larger exposure times are needed to 

compensate for the lack of light which increases the chances 

of camera shake. Pose variation is another challenge for 

realizing the true potential of face recognition systems in 

practice. This section is devoted to handling the combined 

effects of blur, illumination and pose. 

A. Handling Illumination Variations 

To handle illumination variations, we modify our basic 

blur-robust algorithm (NU-MOB) by judiciously utilizing the 

following two results: 

• In the seminal work of [20], it has been shown that if the 

human face is modeled as a convex Lambertian surface, 

then there exists a configuration of nine light source 

directions such that the subspace formed by the images 

taken under these nine sources is effective for 

recognizing faces under a wide range of lighting 

conditions. Using this “universal configuration” of 

lighting positions, an image f of a person under any 

illumination condition can be written as 
9 

 f = αi fi (14) 

i=1 

where αi,i = 1,2,...,9 are the corresponding linear 

coefficients. The fis, which form a basis for this 9D 

subspace, can be generated using the Lambertian 

reflectance model as 

fi(r,c) = ρ(r,c) max(n(r,c)T 
si,0) (15) where ρ and 

n are the albedo and the surface normal, respectively, at 

the pixel location (r,c), and s is the illumination direction. 

Following [19], we approximate 

 

the albedo ρ with a frontal, sharp, and well-illuminated 

gallery image captured under diffuse lighting, and use the 

average (generic) 3D face normals from [33] for n. 

• In [19], it has been shown that for the case of space-

invariant blur, the set of all images under varying 

illumination and blur forms a bi-convex set, i.e., if we fix 

either the blur or the illumination, the resulting subset is 

convex. As discussed in Section III, according to the 

motion blur model for faces, the set of all motion-blurred 

images obtained by blurring a focused gallery image 

using the TSF model also forms a convex set. Therefore, 

the result in [19] extends equally well to our situation i.e., 

the set of all images under varying illumination and non-

uniform motion blur also forms a bi-convex set. 

Based on these two results, we develop our non-uniform 

motion blur and illumination (MOBIL)-robust face 

recognition algorithm. The solution that we seek can be posed 

as the minimization of the following cost function given by 

9 

[hTm,αm,i] = argmin||W(g −αiAm,ihT) ||hT||1 
 hT,αi i=1 

 subject to hT ≥ 0 (16) 

We adopt the alternating minimization strategy outlined in 

[19] to solve the above equation. But note that, unlike in [19], 
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we need to solve for the TSF in the motion estimation step. 

We first obtain the nine basis images fm,i,i = 1,2,...,9 for each 

gallery image fm,m = 1,2,..., M. Next, for each gallery image 

fm, we estimate the optimal TSF hTm and illumination 

coefficients αm,i by solving equation (16). To determine the 

identity of the probe, we transform (reblur and re-illuminate) 

each of the gallery images fm using the estimated TSF hTm and 

the illumination coefficients αm,i, compute the LBP features 

from these transformed gallery images and compare them with 

those from the probe g to find the closest match. See 

Algorithm 2. 

We now elaborate on the two steps involved in our 

AM algorithm. For any gallery image fm, in the first iteration, 

we assume the blur to be an impulse (i.e., no blur) and 

estimate the nine illumination coefficients αm,i by solving the 

linear least squares problem 
g 

= Lmαm, where Lm is a matrix 

whose 

 

Fig. 7. An example image from the PIE dataset illustrating the alternating 

minimization algorithm is shown in the first two rows. (a) Gallery, (b) probe, 

(c) relit gallery image, (d) reblurred and relit gallery image, and (e) a plot of 

the LBP cost versus iterations. Another example from our real dataset is 

shown in row 3. (f) Gallery, (g) probe, (h) reblurred and relit gallery image. 

nine columns contain the basis images fm,i corresponding to 

the subject m lexicographically ordered as vectors, and αm = 

[αm,1,αm,2,...,αm,9] are its corresponding illumination 

coefficients. Now, we create a new relit gallery image from 

the basis images using the estimated illumination coefficients 

αm,i. This completes the first step of the alternation wherein 

we fixed the blur and estimated the illumination. Next, we 

build Am using warped versions of this relit gallery image and 

estimate the TSF hTm by solving equation (13). Observe that 

the illumination is fixed and we are solving for the blur in this 

step. Following this, we blur each of the basis images using 

the estimated TSF hTm before proceeding to the second 

iteration. Note that the matrix Lm in the second and 

subsequent iterations is built from the blurred basis images. 

To summarize, in one step, we minimize over αm,i keeping hTm 

fixed and in the other, we minimize over hTm keeping αm,i 

fixed, and iterate till convergence. An example from the PIE 

dataset illustrating this sequence of operations is shown in Fig. 

7. The optimization problem is convex with respect to blur 

and illumination considered individually. Therefore, we are 

guaranteed to converge to at least a local minima by 

alternately optimizing over hTm and αm,i. Another example 

from our real dataset depicting the gallery, the probe, and the 

reblurred and relit gallery is also shown in Fig. 7. 

B. Handling Pose Variations 

Most face recognition algorithms are robust to small 

variations in pose (∼ 15°) [25], but the drop in performance is 

severe for greater yaw and pitch angles. In our experiments, 

we found this to be true of our MOBIL algorithm also. The 

reason behind this drop in accuracy is that intra-subject 

variations caused by rotations are often larger than inter-

subject differences. Clearly, there is no overstating the 

 

Fig. 8. Example images of a subject from the PIE database under new poses. 

The images in (a) and (b) are synthesized from the frontal gallery image using 

the average face depthmap shown in (c). 

formidable nature of the problem at hand - recognizing faces 

across blur, illumination and pose. To this end, we next 

propose our MOBILAP algorithm which, using an estimate of 

the pose, matches the incoming probe with a synthesized non-

frontal gallery image. To the best of the authors‟ knowledge, 

this is the first ever effort to even attempt this compounded 

scenario. 

Owing to the robustness of face recognition algorithms to 

small pose variations of upto ∼15°, a certain level of 

quantization of the in-depth rotations is possible [25]. A recent 

work [34] that unifies face detection, pose estimation, and 

landmark localization has also adopted this 15° discretization. 

This method, suited for focused, cluttered images, detects the 

face(s) and returns a quantized estimate (between −90° to 90° 

every 15°) of the pose(s). We use this technique to obtain an 

estimate of the pose of the blurred probe image. We note from 

our experiments that there are errors in landmark localization 
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due to blur, and the method in [34] can then yield inaccurate 

pose estimates with the true pose being returned only about 

45−55% of the time. However, it almost always returns an 

estimate which is within ±15° of the true pose. Using this 

estimate, we synthesize, from each frontal gallery, the image 

of the subject under the new pose with the help of the average 

depthmap used in Section IV-A. (See Fig. 8.) These 

synthesized poses now form the new gallery set. Although the 

shape of each subject‟s face may vary from the generic 

depthmap, the algorithm retains its simplicity and the increase 

in computational time due to this step is only minimal. The 

nine illumination basis images are estimated as before using 

(15) but with ρ now being the new synthesized pose and n 

being the surface normals recomputed from the rotated 

depthmap. Note that the motion blur model for faces discussed 

in Section III applies even in the event of a pose change. An 

overview of the algorithm is presented in Algorithm 3. 

V. EXPERIMENTS 

In Section V-A, we first demonstrate the effectiveness of 

our MOBIL algorithm (of Section IV) in recognizing faces 

across blur and illumination using two publicly available 

databases - PIE [35] and Extended Yale B [36]. Using the PIE 

dataset, we further go on to show, in Section V-B, how our 

MOBILAP algorithm can handle even pose variations. Note 

that, as before, we blur the images synthetically to generate 

the probes as these two databases do not contain motion blur. 

Therefore, these experiments (and the ones already discussed 

in Section III-C) are synthetic or quasi-real because the blur is 

synthetically introduced. In Section V-C, we report 

 

MOBILAP‟s results on the Labeled Faces in the Wild [37] 

dataset (which is a publicly available real dataset) using the 

„Unsupervised‟ protocol. We also evaluate the performance of 

MOBILAP on our own real dataset captured using a handheld 

camera that contains significant blur, illumination and pose 

variations, in addition to small occlusions and changes in 

facial expressions. 

A. Recognition Across Blur and Illumination 

We first run our MOBIL algorithm on the illum subset of 

the PIE database which consists of images of 68 individuals 

under different illumination conditions. We use faces with a 

frontal pose (c27) and frontal illumination ( f11) as our gallery. 

The probe dataset, which is also in the frontal pose (c27), is 

divided into two categories- 1) Good Illumination (GI) 

consisting of subsets f06, f07, f08, f09, f12 and f20 (6 different 

illumination conditions) and 2) Bad Illumination (BI) 

consisting of subsets f05, f10, f13, f14, f19 and f21 (6 different 

illumination conditions). Next, we blur all the probe images 

using the five different blur settings, and the transformation 

intervals discussed in Section III-C. 

To perform recognition using MOBIL, we first compute the 

nine illumination basis images for each gallery image as 

described in Section IV. For comparison, we used the methods 

S.Nos. 1(b), 2, through 9 mentioned in Table I. Since [17] 

does not have an explicit formulation to handle variations in 

lighting, we followed the approach taken in their paper and 

histogram equalized both the gallery and the probe images 

before executing their algorithm. The recognition results are 

provided in Table III. It is clearly evident that MOBIL 

outperforms the comparison techniques (including NU-MOB 

which does not explicitly handle illumination) for all blur 

settings. 
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We also tested our Algorithm 2 on the Extended Yale B 

dataset. The dataset consists of images of 28 individuals under 

different illumination conditions. The frontal pose P00 and 

light source position A+000E+00 constitutes the gallery. The 

probe set is once again divided into two categories - 1) Good 

Illumination (GI) consisting of subsets A −005E −10, 

A −005E + 10, A + 005E −10, A + 005E + 10, A + 

000E + 20, A + 000E −20, A −010E + 00, A −010E −20, A + 

010E + 00, A + 010E −20, A − 

015E + 20, A + 015E + 20, A − 020E + 10, 

A −020E −10, A + 020E −10, A + 020E + 10, 

A −025E + 00, A + 025E + 00 (18 different illumination 

conditions), and 2) Bad Illumination (BI) consisting of subsets  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A −020E −40, A −035E −20, A −035E + 15, A −035E + 40, A + 

000E + 45, A + 035E + 40, A + 

035E + 15, A + 035E − 20, A + 020E − 40, 

A + 000E −35 (10 different illumination conditions.) Here, A 

denotes the azimuth angle and E denotes the elevation angle 

of the light source. The camera is fixed at the frontal pose 

(P00) and only the light source positions are varied. The 

recognition results are presented in Table IV and MOBIL yet 

again scores over others. The AM algorithm converges in a 

few iterations, and in our experiments, we normally terminate 

it after five iterations. Due to the severity of blur, our results 

for full 6D motion are marginally lower than our scores for 

the other four blur settings. 

TABLE III 

RECOGNITION RESULTS (%) ON THE PIE DATASET USING MOBIL ALONG WITH COMPARISONS 

      

      

      

      

      

      

      

      

      

      

      

      

      

TABLE IV 

RECOGNITION RESULTS (%) ON THE EXTENDED YALE B DATASET USING MOBIL ALONG WITH COMPARISONS 
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In the experiments conducted so far, the blur was 

synthesized on pre-aligned images i.e., the gallery and probe 

images were aligned prior to applying the blur on the probe. 

To demonstrate our method‟s robustness to alignment errors, 

we also performed the following experiment. For the GI 

subsets of both PIE and Extended Yale B datasets, we used 

the code in [34] to detect the eye centers in the blurred probes. 

The probes were then registered with the gallery using these 

detected eye centers. We note that the method in [34], 

designed for focused images, does not return very accurate 

eye centers when a blurred image is presented. However, even 

a coarse registration between the focused and the blurred faces 

suffices for our technique because minor alignment errors are 

implicitly accounted for in the TSF estimation procedure i.e., 

small pixel misalignments are compensated for by the in-plane 

translational search intervals in the motion estimation step. 

We noticed that the drop in recognition accuracy (over pre-

aligned images) is quite marginal - only 1 to 2% on an 

average, whereas the scores of our closest competitors 

(despite being provided aligned images directly) are much 

lower as can be seen from Tables III and IV. 

B. Recognition Across Blur, Illumination, and Pose 

Finally, we take up the very challenging case of allowing 

for pose variations in addition to blur and illumination. We 

once again use the PIE dataset. We begin by selecting four 

near-frontal poses (pitch and yaw angles within ∼15°) and 

explore the robustness of MOBIL itself to small variations in 

pose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 9. PIE database. Different camera poses under frontal illumination (f11). 

TABLE V 

RECOGNITION RESULTS (%) FOR MOBIL ON THE GOOD ILLUMINATION SUBSET OF THE PIE DATABASE ALONG WITH COMPARISONS 

 

     

     

     

     

     

      

     

      

     

     

      
TABLE VI 

RECOGNITION RESULTS (%) FOR MOBIL ON THE BAD ILLUMINATION SUBSET OF THE PIE DATABASE ALONG WITH COMPARISONS 
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 As before, the camera position c27 (frontal pose) and flash 

position f11 (frontal illumination) constitute the gallery. In this 

experiment, however, the probe set, divided into good and bad 

illumination subsets, contains the four nearfrontal poses c05 

(−16° yaw), c07 (0° yaw and −13° tilt), c09 (0° yaw and 13° tilt) 

and c29 (17° yaw). Note that both camera poses and flash 

positions are varied. Example images are shown in Fig. 9 

columns 1 to 4. The recognition results for GI and BI, 

presented in Tables V and VI, respectively, are clear 

indicators of MOBIL‟s robustness to small variations in pose. 

However, we note that there is some drop in our algorithm‟s 

recognition accuracy in going from GI to BI due to the 

combined effects of blur, illumination and pose. 

Next, we select differently illuminated probes in two non-

frontal poses c37 (−31° yaw) and c11 (32° yaw). See Fig. 9 

columns 5 and 6. Once again, the frontal camera position c27 

and flash position f11 constitute the gallery. For such large 

changes in pose, we found that MOBIL returned recognition 

rates less than 15%. Hence, as discussed in Section IV-B, we 

first obtain an estimate of the pose of the blurred probe image 

using the code of [34]. Recognition is performed using the 

steps outlined in Algorithm 3 MOBILAP. The average 

success rate of the algorithm in [34] in determining the exact 

true pose (−30° for c37 and +30° for c11) was only 52.70%. 

However, the estimated pose was almost always within ±15° 

of the true pose. We have seen from our previous experiment 

that our method is robust to pose variations of upto ±15°. 

Therefore, our recognition rates remain largely unaffected 

despite some errors in pose estimation, and our MOBILAP 

algorithm exhibits stable performance even under 

considerable pose variations and illumination changes. This 

can be seen from our results in Table VII. As this is the first 

attempt of its kind at recognizing faces across blur, 

illumination and pose, there are no comparison results to 

report. 

C. Real Datasets 

We also report MOBILAP‟s performance on two real 

datasets - the publicly available Labeled Faces in the Wild 

(LFW) [37] dataset and our own real dataset captured under 

unconstrained settings. First, we evaluate our algorithm‟s 

performance on LFW which is a very challenging dataset 

containing 13,233 images of 5,749 subjects in which the face 

images have large variations in illumination, pose, expression 

and age, in addition to other degradations such as occlusion, 

low resolution etc. However, as pointed out in [38] and [39] 

the images in LFW are typically posed and framed by 

professional photographers, and are known to contain very 

little or no blur. Even so, an evaluation on this dataset is quite 

useful because in real applications, the extent of blur in the 

probe images is not known a priori. The database was 

designed to study the face verification problem in which a pair 

of two face images are presented, and it is required to classify 

the pair as either „same‟ or „different‟ depending upon 

whether the images are of the same person or not. Fig. 10  

 

 

shows examples of „same‟ and „different‟ pairs of face 

images from this dataset. We evaluate the proposed approach 

on „View 2‟ of the dataset (as per LFW protocol) consisting of 

3,000 matched and 3,000 mismatched pairs divided into 10 

sets. Since our method does not involve any training, we 

report results under the „Unsupervised‟ protocol. Note that 

this protocol is considered the most difficult [40] of all since 

no training data is available. 

 

 

 

Fig. 10. Examples of same and different pairs of face images from the LFW 

dataset. 
In the Unsupervised paradigm, the area under the ROC 

curve (AUC) has been selected as a suitable scalar-valued 

measure of accuracy according to the latest score reporting 

procedures for LFW. We use the LFW-aligned version [41] of 

the database to report our scores with Chi square distance as 

our similarity measure. Given the challenging nature of this 

dataset, we use multi-resolution LBP histograms [40] 

(uniform LBP histograms are extracted in 10 different 

resolutions instead of just one single resolution) for this 

particular experiment only. In order to minimize the effects of 

the background, the faces are first closely cropped. The search 

intervals for the TSF were kept small (in-plane translations of 

[−2 : 1 : 2] pixels, and in-plane rotations of [−1° : 1° : 1°]) 

because the images in this dataset contain very little or no 
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blur. Since frontal well-illuminated gallery images may not be 

available in all cases, we first reblur, relight and change the 

pose of the first image with respect to the second, and match 

them. The pose is compensated for using the estimate of the 

pose returned by [34]. Following [40], we then exchange the 

roles of the first and second image and match again. This 

procedure is then repeated for horizontally mirrored versions 

of both images. The final similarity measure for a given image 

pair is considered as the minimum of the distances thus 

obtained from these four combinations. Table VIII reports the 

AUC values obtained by MOBILAP along with other 

approaches that follow the Unsupervised protocol. The scores 

have been reproduced from the LFW results page 

http://viswww.cs.umass.edu/lfw/results.html#Unsupervised. 

The ROC curves are also shown in the plot of Fig 11 in order 

to better evaluate the performance. Note that MOBILAP ranks 

close to MRF-MLBP [40] which is next only to PAF [42]. 

LFW contains significant amounts of occlusion, expression 

and age variations (see Fig. 10(c)-(d)) which we do not model 

in our approach, whereas competing methods handle one or 
TABLE VIII 

PERFORMANCE COMPARISON FOR DIFFERENT METHODS ON LFW 

DATABASE UNDER THE „UNSUPERVISED‟ PROTOCOL 

  

  

  

  

  

  

  

  

  

 

Fig. 11. ROC curves of different approaches on the LFW dataset for the 

Unsupervised protocol. 

more of these effects explicitly. While our framework can also 

handle blur when introduced in LFW (see supplementary 

material) the competing methods are not tailored to deal with 

blur. 

Finally, we report recognition results on a real dataset that 

contains face images that we ourselves captured in 

unconstrained settings. There are 50 subjects in the dataset. 

The gallery contains one frontal, sharp and well-illuminated 

image taken outdoor under diffuse lighting. The probe images, 

2,200 in number, were captured using a hand-held camera 

under indoor and outdoor lighting conditions. The probe 

images suffer from varying types and amounts of blur, 

variations in illumination and pose, and even some occlusion 

and facial expression changes. Although the blur was 

predominantly due to camera shake, no restriction was 

imposed on the 

 

Fig. 12. Cropped faces of four subjects from the real dataset. The gallery 

images are shown in column one. The probe images have variations in 

illumination, facial expressions changes (column four in row one), small 

occlusions (missing spectacles - column four, row two) and differences in 

pose (columns two through four in row three). 

TABLE IX 

RECOGNITION RESULTS FOR MOBILAP ON OUR REAL 

DATASET ALONG WITH COMPARISONS 
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movement of the subjects during image capture, and, 

therefore, a subset of these images could possibly have both 

camera and object motion. Following [19], we manually 

cropped the faces and resized them to 64×64 pixels. Some 

representative images from the gallery and probe are given in 

Fig. 12. Observe that, as compared to the gallery, the probes 

can be either overlit or underlit depending on the setting under 

which they were captured. We generate the nine illumination 

basis images for each image in the gallery and then run 

MOBILAP. It has been pointed out in [9]–[11] that in most 

practical scenarios, a 3D TSF is sufficient to explain the 

general motion of the camera. In view of this observation and 

in consideration of computation time, we select the search 

intervals for the TSF as [−4 : 1 : 4] pixels for in-plane 

translations, and [−2° : 1° : 2°] for in-plane rotations. The 

recognition results are presented in Table IX. Although the 

accuracy of all the methods drop due to the unconstrained and 

challenging nature of this dataset, the effectiveness of the 

proposed technique in advancing the state-of-the-art in 

handling non-uniform blur, illumination, and pose in practical 

scenarios is reaffirmed yet again. 

VI. CONCLUSIONS 

We proposed a methodology to perform face recognition 

under the combined effects of non-uniform blur, illumination, 

and pose. We showed that the set of all images obtained by 

non-uniformly blurring a given image using the TSF model is 

a convex set given by the convex hull of warped versions of 

the image. Capitalizing on this result, we initially proposed a 

non-uniform motion blur-robust face recognition algorithm 

NU-MOB. We then showed that the set of all images obtained 

from a given image by non-uniform blurring and changes in 

illumination forms a bi-convex set, and used this result to 

develop our non-uniform motion blur and illumination-robust 

algorithm MOBIL. We then extended the capability of 

MOBIL to handle even non-frontal faces by transforming the 

gallery to a new pose. We established the superiority of this 

method called MOBILAP over contemporary techniques. 

Extensive experiments were given on synthetic as well as real 

face data. The limitation of our approach is that significant 

occlusions and large changes in facial expressions cannot be 

handled. 
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