

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 167
International Conference on Recent Research in Science and Technology

OSEK-V: APPLICATION-SPECIFIC RTOS INSTANTIATION

IN HARDWARE
1BURRI NARENDER REDDY, M.Tech Assistant Professor, narendarburri@gmail.com

2P.SHANKAR, M.Tech Assistant Professor, shankardvk48@gmail.com

Department-ECE

Pallavi Engineering College Hyderabad, Telangana 501505.

ABSTRACT

The employment of a real-time operating system (RTOS) in embedded control systems is often an all-or-nothing

decision: While the RTOS-abstractions provide for easier software composition and development, the price in

terms of event latencies and memory costs are high. Especially in HW/SW co-design settings, system

developers try to avoid the employment of a full-blown RTOS as far as possible. In OSEK-V, we mitigate this

trade by a very aggressive tailoring of the concrete RTOS instance into the hardware. Instead of implementing

generic OS components as custom hardware devices, we capture the actually possible application–kernel

interactions as a finite-state machine and integrate the tailored RTOS semantics directly into the processor

pipeline. In our experimental results with an OSEK-based implementation of a quad rotor right controller into

the Rocket/RISC-V soft core, we thereby can significantly reduce event latencies, interrupt lock times, and

memory footprint at moderate costs in terms of FPGA resources.

KEYWORDS

Application special processor design, hardware-assisted real-time scheduling, OSEK

1 INTRODUCTION

This paper addresses the hardware–operating-system boundary in embedded control systems. Our modern lives

are driven by these special-purpose systems [30]: We can already more than a hundred of them in our car [5],

dozens of them in our household appliances, and trends like the Internet of Things (IoT) will further increase

their role for everyday life. Embedded control systems typically have to full dedicated, pre-denied task in a

cyber-physical context, often under the consideration of strong safety and timing requirements. As they are

employed in goods of mass production (such as cars), the per-unit

Figure 1: The OSEK-V Approach with Application-Specific

(blue) and Generic (green, dashed) Fragments

cost pressure is high. Hence – if at all – a compile-time tailor able real-time operating system (RTOS) is

employed as system software, but in many cases developers try to avoid the costs of even a small RTOS kernel.

Compared to bare-metal software or even discrete hardware, solutions using an RTOS are typically less

analyzable/ predictable and induce much higher event latencies and memory costs. On the other hand, the

abstractions by the RTOS (e.g., prioritized threads, alarms, resources) significantly ease the development of

more complex and composable control applications. However, even in cases of HW/SW codesign, we often see

an all-or-nothing approach: Engineers either avoid employment of RTOS abstractions (which complicates

software development) or instantiate a complete RTOS as a (costly) standard software component. In this paper,

we resolve the all-or-nothing gap in HW/SW co-design settings by combining the best of both worlds: The idea

is to keep the RTOS interface for easy and composable application development, but aggressively tailor its

actual implementation to the very specific usage pattern of the concrete application directly into the hardware.

 The idea to push the operating system (or parts thereof) into (custom) hardware to improve on event

latencies is a long-established of research (e.g., [6, 3, 21, 24, 15, 11]). In contrast to such previous work, we

perform a much tighter tailoring of the OS and hardware based on our whole-system approach: Instead of

instantiating dedicated components (such as the scheduler) as an additional hardware device besides the CPU,

we integrate the RTOS semantics directly into the CPU pipeline. E_ectively, the concrete RTOS interaction

model (actually used syscalls and their call-site context) becomes an e_cient and application-tailored extension

of the processor’s instruction set and register _les. This direct processor integration avoids the costs of a full-

blown RTOS, but exposes properties that are hard to achieve software-only on modern architectures: Perfectly

mailto:narendarburri@gmail.com
mailto:shankardvk48@gmail.com

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 168
International Conference on Recent Research in Science and Technology

predictable timing of all RTOS interactions (which take just a few processor cycles), no kernel-induced cache

evictions, drastically reduced interrupt lock times. From the security point of view, the strict tailoring of the

RTOS reduces its “misuse capabilities”, the instantiation in hardware e_ectively eliminates the possibility to

inject code into the kernel domain. In combination with memory protection mechanisms (not addressed in this

paper), erfect isolation without executing kernel code would be possible. In previous work, Dietrich et al. [9]

have presented a static cross-kernel and whole-system analysis, as well as an applicationspeci _c _nite-state

machine (FSM)-based kernel implementation [8]. With this paper, we improve the e_ciency of the system

analysis, integrate the FSM-based representation into an actual processor pipeline, and employ further tailoring

of system components that become possible at the hardware level. In particular, we claim the following

contributions: We present a method to catch the semantics of a concrete RTO instance as a FSM to provide for

an e_cient hardware implementation. By application-speci_c instantiation of a standard RTOS interface into the

processor pipeline we achieve low syscall and interrupt latencies. The whole tailoring process is fully

automated; hardware and software variants are generated on demand. Our open-sourced implementation

OSEK-V covers the automotive OSEK/AUTOSAR RTOS standards [23, 2] and integrates their application-

tailored semantics into the Rocket RISC-V core [17, 34]. The rest of the paper is organized as follows: Section 2

describes the system model and gives an overview on our approach: Starting with the application, a system state

machine is derived in Section 3 and integrated into the CPU pipeline in Section 4. We evaluate our approach in

Section 5 on the example of a real-world _ight-control application, discuss the results in Section 6, and give an

overview on further related work in Section 7 before concluding in Section 8.

2 SYSTEM MODEL AND IDEA

We assume a static real-time control system with _xed-priority scheduling: One application is combined with a

statically con_gured RTOS (all threads and interrupt handlers are known/derivable at compile time) and

delivered as a system image. We furthermore assume a static application structure (no dynamic code loading, no

invocation of syscalls via nontrivial function pointers). Note that these requirements, while appearing harsh

from the viewpoint of general-purpose computing, are common practice and basically ful_lled inherently by the

majority of real-time control systems: They are mandated by the dominant safety (e.g., MISRA-C [10], ISO

26262 [13]) and RTOS industry standards anyway. For instance, ARINC 653 partitions [1] (avionics), μITRON

[28] and OSEK/AUTOSAR [23, 2] (automotive), but also the POSIX.4 real-time extensions (with

SCHED_FIFO) all prescribe _xed-priority scheduling of a well-known set of tasks.

2.1 Our Approach In a Nutshell

Figure 1 visualizes our concept of usage-based tailoring of the RTOS down into the hardware: First, we perform

an analysis of the speci_c application and its described system conguration to extract all possible interaction

between application and RTOS as a _nite-state machine. This system state machine (SSM) mimics the

semantics of the RTOS for the concrete application; it receives input signals (synchronous system calls and

interrupts), adapts its internal state, and exposes the currently running thread as an output signal. Second, we

integrate this SSM into an applications CPU design: the application triggers the SSM with newlyintroduced

instructions and the pipeline reacts by dispatching to another hardware thread. As the result, we get an

automatically tailored computing system for the concrete real-time application. Of course, in the general case

such a RTOS-FSM would be intractable due to state explosion: The internal kernel state of an event-triggered

RTOS encompasses the ready list, thread contexts, the running thread, and so on. Every syscall is a potential

point of rescheduling at which, depending on the chosen scheduling strategy and the dynamic state of the ready

list, some other thread may be continued that, in turn, may trigger further syscalls. Still, our approach is tractable

due to two facts: _rst, we rely on a system model with an inherently bounded number of possible system states.

Second, we supply the system analysis with application-speci_c information to reduce indeterminism as far as

possible at compile time: We exploit static knowledge about the RTOS con_guration and its semantics in

combination with a whole-system analysis across all control _ows of the application gure out how the RTOS is

actually used. Thereby, we can reduce he number of possible states drastically, as the outcome of many

scheduling decisions can be derived (or at least constrained) ahead of time [9]. This, in turn, provides for an

e_cient implementation in hardware, where we integrate the RTOS and its tailored hardware components (e.g.,

thread contexts or timers) directly into the processor pipeline. Without loss of generality, we describe our

approach in the following on the example of the system model mandated by OSEK. Our actual implementation

named OSEK-V covers OSEK/AUTOSAR systems [23, 2] up to conformance class ECC1.

2.2 Overview of OSEK-OS

The OSEK standard de_nes a widely used class of _xed-priority RTOSs and has been the dominant industry

standard for automotive applications for the last two decades. Without loss of generality, we based our approach

on the RTOS interface mandated by the OSEK-OS standard [23]. In the following, we brie_y introduce the

abstractions provided by its API. Basically, OSEK o_ers two main control-_owabstractions: interruptservice

routines (ISRs) and tasks (traditionally called threads). ISRs are activated asynchronously by the hardware an

have limited access to system services, while threads possess a statically assigned priority and are activated

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 169
International Conference on Recent Research in Science and Technology

synchronously by software. Threads are allowed to use all system services and are executed according to a

_xed-priority preemptive scheduling policy. On each new activation, threads start from the very beginning until

their (self-) termination. Critical sections can be synchronized either by a coarse-grained global interrupt lock, or

more _ne-grained resource objects. Based on a stack-based priority-ceiling protocol [4], OSEK resources ensure

mutual exclusion while preventing deadlocks and unbounded priority inversion. Furthermore, a thread can wait

for an event to be set and remains in the waiting state until another control _ow signals the arrival of the event.

Figure 2: Example OSEK System. The system conguration

(app.oil) describes a single thread T and its periodic activation

every 70 ticks, which automatically begins at system

boot. The application code (app.c) includes the implementation

of T and the generator materialized the system description

into generated.c

Recurring periodic as well as aperiodic thread activations or events can be triggered with the help of statically

declared alarms. Every alarm is connected to a counter, which typically is driven through a hardware timer.

Alarms can be started with a phase/period automatically at system startup, or dynamically at run time. For a

speci_c application, the developer declares all system objects and their parameters in a domain-speci_c

con_guration _le. Typically, a system generator derives the concrete RTOS instance statically at compile time

and links application and OS library into a single system image. In Figure 2, an example OSEK system with one

task and one periodic alarm is shown. The application code (app.c) contains the task T, which executes a

computation and terminates itself afterwards. The system con_guration (app.oil) denotes that task T has a static

priority of 10, is fully preemptable (SCHEDULE = FULL). Furthermore, a counter C is declared and connected

to the alarm A, which expires every 70 ticks after an initial phase shift of 35 ticks. On expiration, the alarm A

activates task T. During compile-time, the system generator produces a system harness (generated.c): An idle

task runs at the lowest priority; the alarm_tick ISR handler manages counters and alarms, when the timer

interrupt occurs. In order to explicitly anchor system behavior, we added arti_cial syscalls (idle, isr, iret, kickoff)

to the code. In this work, we focus on the OSEK extended conformance class 1 (ECC1), which includes waiting

states and resources, but excludes multiple tasks per priority and multiple activations per task. Subsequently, we

consider the described RTOS primitives as a markup language for expressing the real-time system (RTS)’s

behavior, and use the terms threads (for OSEK tasks) and ISRs to distinguish between the control-_ows types.

SYSTEM STATE MACHINE

Since our approach is application-speci_c, we start with a system analysis on one speci_c RTS to extract an

interaction model of application, external environment and the RTOS. The system state machine (SSM) captures

the desired kernel behavior (i.e., rescheduling sequence) in the presence of the analyzed application and the

environmental model. Dietrich et al. [9] described an applicationspeci _c state-transition graph (STG) that

enumerates and connects all possible system states. In this work, we improve the e_ciency of the STG

calculation and subsequently derive the applicationspeci _c SSM from it. Within an event-triggered RTS, the

RTOS receives signals from two sides: the control application issues synchronous syscalls and

external components deliver asynchronous hardware interrupts. In

both cases, the RTOS is activated, manipulates its internal state, and

materializes the scheduling result through dispatching. The internal

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 170
International Conference on Recent Research in Science and Technology

syscall issue ordering is restrained by the application logic; the

possible sequences of external events is shaped by the surrounding

environment.

3.1 Application State Machines

For the system analysis, we express the internal application-structure

as a set of application-speci_c _nite state machines; every thread

and every ISR becomes an application state machine (ASM). These

state machines function as signal generators towards the operatingsystem

model, which, in turn, orchestrates the execution of several

ASMs. In previous work, Dietrich et al. [9] used a (condensed) CFG

to express the syscall ordering. In contrast, the ASM representation

is more dense and we achieve shorter analysis times due to a

reduced number of states.

For each control _ow, we calculate the ASM from the local CFG.1

First, we partition the code into basic blocks that are not maximal,

but do contain either a single syscall or only computation code;

the later cannot in_uence the system state synchronously. For

this separation of in_uences, we demand the application structure

(CFG and syscall locations) to be known at system-generation time.

Figure 3a shows the basic-block partition for the alarm_isr handler

from Figure 2 (syscalls in dark red).

In order to generate a state machine that produces a signal for

every executed basic block, we calculate the line graph from the

CFG. Each CFG edge becomes a vertex, while each basic block

becomes an edge labeled with the block’s contents. However, since

the OS state can only be in_uenced through syscalls, we replace all

computation by "-transitions. It is noteworthy that the transition

labels correspond to syscall sites and not syscall types. Figure 3b

shows the line graph for the alarm_tick ISR.

We remove the "-transitions by applying standard "-elimination

to each ASM. Furthermore, we mark thread states that are reachable

through a "-transition as interruptible by an ISR (E) . For each ASM

state, the set of outgoing edges names those syscalls possible at

one point in the application. Figure 3c depicts the three ASMs

for the running example: when the alarm handler is in state A2,

ActivateTask and the iret syscall site can be executed next and

sent to the SSM.

Figure 3: Application State Machines Construction for Example from Figure 2.

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 171
International Conference on Recent Research in Science and Technology

Figure 4: System State Machine. Every vertex is an abstract

system state; transitions are triggered by syscalls. The currently

running thread overlays the preempted threads. S:

idle thread, A: alarm, T: thread.

Currently, we use a very simplistic model to include other analysis

results to restrict the external-event model. When a thread (or

a group of threads) has an implicit deadline, the triggering event

is blocked until the event processing is _nished [9]. Nevertheless,

other logic of actions on application level could be derived and used

to restrict the event model. For example, it could be de_ned, that a

“send bu_er empty” interrupt could only occur after the associated

SendMessage() function had been invoked.

The application model and the external-event model are connected

to an abstract operating-system model. The OS model is

instantiated with the system con_guration and adheres the OSEK semantics

[23]. We use the system-state enumeration (SSE) [9] method

to combine all three parts and to explicitly enumerate all possible

system states in the STG.

The STG is a directed graph of abstract system states (AbSSs),

which capture a possible system state at one point in time and

hold the information that can in_uence scheduling decisions. Particularly,

each AbSS includes a vector of ASM states that indicate

the current preemption point of each control _ow. In every state,

exactly one _ow is marked as the currently running thread. For

details on the STG construction we refer you to Dietrich et al. [9].

Since every transition label in an ASM corresponds to an kernel

activation and the SSE only combines several ASMs according to the

system semantic, the STG can directly be used a SSM. In Figure 4,

the STG/SSM for the running example is given: The system starts

from the idle loop. On an interrupt (E), the alarm handler can

activate thread T or directly return to idle. If activated, thread

T is dispatched, executes the computation, and terminates itself.

Although the alarm can expire again during the computation, the

can be activated only once.

3.2 System State Machine Minimization

The resulting SSM already exposes the correct behavior, but the

number of states and transition edges is not minimal yet. However,

as state-machine minimization is a well covered and long standing

topic [22, 12], we will only investigate on the SSM speci_cs.

For the SSM minimization, we meld all states that expose the

same observable behavior into a single state. In our case, the observable

behavior is the sequence of possible re-scheduling events.

For example, if two states always occur in the same sequence but

dispatching happens only after the second one, the _rst state can

be merged into the last one. One instance of such a state pair are

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 172
International Conference on Recent Research in Science and Technology

the A1 and A2 states in our running example (Figure 4). From a

system perspective, all A1 states, which are activated by the hardware

event (E), are followed by the same re-scheduling sequence as

the A2 states Therefore, the A1 state is subsumed by its respective

A2 state. We identify such equivalent states by using the Moore

algorithm [22] and merge them into one state. If a transition label

occurs only at self-loops after the merging, we can safely remove

the signal completely from the system.

3.3 Static Alarms

One bene_t of our application-speci_c hardware tailoring is the

possibility for optimized components that match the static system

con_guration. Besides the SSM, we also detect static alarms within

the application, which are very common in embedded control systems:

A static alarm starts automatically at boot time, is never

recon_gured, and triggers at a constant rate. We check for these

properties by static analysis of con_guration and application code.

All non-static alarms are dynamic alarms and can, depending on

the con_guration, be driven by a timer IRQ with a lower base rate,

reducing the IRQ load.

The alarm in the running example (Figure 2) is static: It starts

automatically at boot (AUTOSTART = TRUE), has a phase of 35 ticks

and a period of 70 ticks, and is never recon_gured.

Figure 5: OSEK-V Pipeline

4 DERIVING THE OSEK-V PROCESSOR

In the system analysis, we gathered information to tailor a parametrizable

processor pipeline towards the application requirements. We

map each OS thread to a hardware thread (harts) and introduce specialized

instructions, which interact with the SSM component that

controls hart scheduling. Furthermore, a static-alarm component

generates periodic signals and activates the SSM asynchronously.

4.1 State Assignment and Logic Minimization

For instantiating the SSM in hardware, we have to provide an

e_cient implementation of the state-transition function: Besides

the current SSM state, it consumes one system event and returns a

new system state together with the (next) hart.

The system analysis produces a SSM with symbolic signals

(e.g.“TerminateTask”, “ActivateTask(T)”) and states. For a hardware

implementation, we have to choose bit vectors for these symbolic

values (e.g., hActivateTask¹T ºi = 1012). This choice, known

as the state-assignment problem, largely in_uences the minimal

required complexity of the hardware implementation. Luckily, several

methods have been proposed to solve this problem for di_erent

hardware designs [33, 7, 32].

We use the NOVA program [33] to solve our state-assignment

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 173
International Conference on Recent Research in Science and Technology

problem. NOVA targets optimal encoding for two-level logic implementations

and chooses bit vectors for the system calls and the SSM

states accordingly, when given a “thread id” encoding, which we

choose arbitrarily. Since NOVA internally uses a logic minimizer,

we get a minimized truth table for the transition function as a result.

With this truth table, and the static-alarm information, we proceed

to instantiate the OSEK-V processor.

4.2 The OSEK-V Processor

We built OSEK-V on top of the Rocket core [17], a 64 bit, 6-stage,

in-order pipeline. While this soft core is not primarily targeted for

embedded systems, a compatible stripped-down 32 bit variant is currently

developed. The Rocket implements the RISC-V interface [34],

an ISA designed to support computer-architecture research. The

Rocket resembles a hardware product family and exposes a multitude

of con_guration switches to adapt the implementation towards

application requirements.

We have integrated OSEK-V into the Rocket chip generator,

which is able to generate a cycle accurate C++ simulator at the

register-transfer level. With our adaptions, it instantiates all components

according to the results of the system analysis and wires

them up into the pipeline (see Figure 5).

In order to provide fast control-_ow switching, we have extended

the pipeline to support hardware threading. The processor is enabled

to track di_erent execution _ows (harts) and their contexts

simultaneously: Each pipeline stage has a tag to hold information

about the currently executed hart; register _le and program-counter

generator (NPC Gen) are extended to hold the execution context

for multiple hardware threads (harts). The issuing of instructions

from di_erent harts is controlled by the SSM.

In our current implementation, every OSEK task and the idle

thread is mapped as separate harts, while ISRs still execute in the

context of the current hart. This is a trade-o_ between ISR activation

times and hardware resource consumption, but could be

softened by using one dedicated hart to execute all ISRs.

4.3 Special Instructions and Static Alarms

Furthermore, the OSEK-V pipeline provides two new instructions to

interact with the SSM: ssm.ld and ssm.tx. The ssm.tx instruction

is used in the boot code to set the instruction pointers for all harts.

The ssm.tx instruction communicates its immediate operand as a

system event (see Section 4.1) to the SSM, which, in turn, invokes

the state-transition function on it.

When an ssm.tx instruction enters the pipeline and reaches the

execution stage, the preceding stages are stalled until memory and

commit stage have emptied. This stall ensures that all exceptions

preceding the ssm.tx instruction remain precise. The execute stage

sends the system event to the SSM. While the SSM applies the transition

function and updates the “current hart” signal, the pipeline

is stalled. If a re-schedule happens, the branch-mispredict logic is

reused to _ush the pipeline and to issue an instruction fetch for the

new hart’s program counter.

Besides the ssm.tx instruction, the static-alarm component also

issues system events. Internally, it derives clock signals with di_erent

phases and periods from the real-time–clock tick and communicates

with the SSM. If one or more alarms expire, the static-alarm

component pauses the pipeline and waits for the current instructions

to _nish. Afterwards, multiple system events are transmitted

atomically to ensure that alarms can trigger simultaneously. The

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 174
International Conference on Recent Research in Science and Technology

transmission is initiated with one hisr ¹ºi, multiple alarm actions

(e.g., hActivateTask¹…ºi) build the body, and the hiret ¹ºi triggers a

possible rescheduling.

Static-alarm events are handled like other external events; they

are only accepted when interrupts are currently not locked in the

processor. Therefore, all regions with locked interrupts still have a

run-to-completion semantic.

The OSEK-V functionality is incorporated into the Rocket chip

generator; con_guration parameters are encoded as JSON and directly

read and interpreted by the hardware design. The parameters

include the minimized truth table of the SSM logic, the number of

harts, and the static-alarm setup. While the con_guration states

only the intentional behavior, the generator decides how implement

these requirements. For example, the static-alarm component uses

di_erent strategies to derive clock signals depending on the phase

and period of the alarm activation.

4.4 System Generation and Startup

Tailored hardware also requires the system software to be tailored.

By pushing the OS logic in hardware, only little functionality is left

to the software part of the kernel. At boot, the kernel con_gures the

program counters with the ssm.ld instruction. The stack pointer

is initialized by the thread itself as one of the _rst instructions.

When a terminated thread is reactivated, it starts executing at

the stack–setup code. The remaining dynamic alarms, as well as

regular interrupts are handled by the software kernel. Within

the application, syscall sites are replaced with ssm.tx instructions

carrying system-event identi_ers. The syscall sites have to be

enclosed by a pair of interrupt disable/enable commands, to ensure

symmetry between the re-schedule points in ISRs and threads.

We made the process of tailoring the RTOS and the hardware

fully automated. The system analysis and transformation is implemented

in the dOSEK framework and requires no manual intervention.

The Rocket generator reads in the processor con_guration and

generates the OSEK-V instance; either as cycle-accurate emulator

or as Verilog code.

5 EXPERIMENTAL RESULTS

For our evaluation scenario, we employ the I4Copter [31], a safetycritical

embedded control system (quadrotor helicopter) developed

in cooperation with Siemens Corporate Technology.

We analyzed the task setup of the I4Copter control application

(Figure 6): Threads are activated both periodically and sporadically

by three alarms and one ISR. Inter-thread synchronization is realized

with OSEK resources and a watchdog thread observes the

remote control communication. In total, the scenario consists of

eleven threads, three periodic events (alarms), one sporadic interrupt,

and one resource. One alarm, which controls the watchdog

thread and runs with a low activation rate, is recon_gured at run

time, and, therefore, is a dynamic alarm; the two others are static.

We replaced the application logic with checkpoint markers, since

we are interested in the interaction between application and kernel.

The substitution does not in_uence the analysis, but only exchanges

the contents of computation blocks. In total, the system includes

52 system-call sites.

During the SSM construction (Section 3), we used application

knowledge about implicit deadlines to restrict the external-event

model. For example, the “Sampling”, “Signal Processing”, and

“Flight Control” tasks always _nish execution before the 3-milliseconds

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 175
International Conference on Recent Research in Science and Technology

alarm triggers again. As described Dietrich et al. [9], this incorporation

of available information eases the system analysis.

5.1 Performance

As a _rst evaluation, we ran the benchmark scenario for di_erent

degrees of tailoring and measured the required clock cycles in the

cycle-accurate simulator for di_erent system operations. We ran the

benchmark for three hyper periods and give the results in Figure 7.

The _rst two variants do not touch the underlying processor,

and are only put in place to give a context for the OSEK-V results:

The Baseline variant in Figure 7 is the standard dOSEK implementation,

where all alarms are dynamic. The Specialized variant uses

the system-analysis results to replace the syscall sites with specialized

code fragments [9]. Specialized syscalls may omit operations

(e.g., _nd the highest-priority runnable thread), if the result can be

deduced statically. In the OSEK-V–SSM variant, the pipeline is enriched

by a tailored SSM component, while all alarms are managed

dynamically. Finally, the SSM+Alarms variant includes the SSM, as

well as a static-alarm component that manages two of three alarms.

In the cycle-accurate trace, we identify operations on the kernel

state that execute atomically. These operations are synchronous

syscalls, the timer ISR that manages the dynamic alarms, and the

transmission of static-alarm signals. We count the clock cycles

required for these operations, while separating cycles that actually

execute in the pipeline (a, b), from additional cache-stall cycles (c, d).

This separation allows us to discriminate the actual computational

cost of OSEK-V from the processor-speci_c cache hierarchy.

For the whole benchmark, the e_ective clock cycles, where the

processor is not in idle, decrease by specializing syscalls, and even

more by using specialized hardware components (a). The reduction

stems from the shorter atomically-executed kernel activations,

which are synchronized with an interrupt lock. Shorter interruptlock

intervals are of special interest for real-time systems; the

responsibility of the system increases, when the interrupt latency

goes down. Without considering cache stalls, the average length

of interrupt locks for all operations decrease by about 80 percent

from 195 cycles to 41 cycles (SSM+Alarms). This decrease is mainly

driven by the timer ISR. Nevertheless, even without static alarms

the average operation takes only 138 cycles (SSM).

We distinguish instances of synchronous syscalls, as well as

ISR activations, into two classes: events that do not cause a rescheduling,

and the ones that actual dispatch to another control _ow.

Furthermore, we consider the event with the longest processing

time as a relevant information, since we reason about real-time

capabilities. Therefore, we give not only average run times, but

also maximal run times for each operation (upper bar).

First, we consider synchronous syscalls issued by the application

code. When no re-schedule occurs, the worst-case times for

OSEK-V without static alarms decreases (�79.29%) in a similar range

as the version with specialized syscalls (�75.71 %). On average, the

tailored hardware is about 50 percent faster than the specialized software.

This di_erence is caused by the fact, that the scheduler and

dispatcher are often already eradicated through specialization for

these non-dispatching syscalls. The advantage for OSEK-V grows

for syscall operations with dispatching: The OSEK-V hardware has

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 176
International Conference on Recent Research in Science and Technology

Figure 6: The _ight-control application of the I4Copter quadrotor helicopter.

Figure 7: Results for I4Copter in the Cycle-Accurate Simulator generated by the Rocket Toolchain.

at least a 75 percent bene_t over the baseline, while the average

bene_t is even over 90 percent.

In purely software-based implementations, every alarm is managed

dynamically through a timer ISR. We measured the executed

cycles for the whole timer ISR as a single system operation, since

the e_ect of the alarm activation manifests atomically at the iret.

Again, we distinguished between operations with and without dispatch

of another thread. The syscall specialization has only minor

in_uence on the cycle counts, regardless of actual re-scheduling.

When a timer interrupt does not cause a rescheduling, the SSM

variant shows only a minor worst-case improvement (�12.77 %).

However, in case of a dispatch, the operation executes about twice

as fast (�47.16 %) in the worst case and causes signi_cant lesser

cache stalls on average (�72 stalls).

The usage of a static-alarm component (SSM+Alarms) results

in several changes in the system’s behavior regarding the alarm

handling. On the one hand, the number of timer interrupt requests

(IRQs) dropped from 280 to 28, since the base rate for the remaining

dynamic watchdog alarm could be lowered. This mainly drove the

drop on the interrupt-blockade times for the whole benchmark.

Additional to the reduced interrupt rate, the execution times for

the ISR dropped for the static alarm variant: Since only one alarm

had to be manged instead of three, ISRs without dispatch (�29.43 %),

as well as with re-scheduling (�59 %) executed signi_cantly faster.

Furthermore, a static alarm activation takes at most 10 cycles and

in_uences the SSM directly, without utilizing the processor.

The decrease in cache-stall cycles is proportional to the degree of

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 177
International Conference on Recent Research in Science and Technology

specialization and goes up to �46.79 percent (c, SSM+Alarms). For

both OSEK-V variants, the remaining cache stalls for synchronous

syscalls and static-alarm activations stem from the instruction fetch

for the application code (d). Only the dynamic-alarm handling can

lead to cache evictions that stem from executed kernel instructions.

5.2 FPGA Synthesis Cost for the OSEK-V Core

Besides the run-time and latency bene_ts of the OSEK-V approach,

we also evaluated the actual cost of having specialized hardware

components next to the pipeline. We start this evaluation with an

Table 1: System Analysis Results for the Benchmarks

Table 2: Synthesis Results for the tailored OSEK-V Core

overview about the results of the system analysis for the I4Copter

benchmark and the running example from Figure 2. These numbers

lay the ground to understand the actual implementation costs that

arise when we synthesize the di_erent OSEK-V cores.

In Table 1, we show the results for the system analysis, which is

executed within the Python-implemented dOSEK framework on a

single Intel Core i7-2600 core. The running example from Figure 2

is a small system: its analysis is fast, the initial SSM is already small,

and the SSM minimization does not cut away much redundancy.

The resulting minimized logic block, which implements the statetransition

function, consists only of four AND clauses (four AND

gates with the outputs combined in one OR gate).

For the I4Copter benchmark, the system analysis takes more

than one minute, where the run time is mainly driven by the stateassignment

phase (96.95 %). Nevertheless, the size of initial SSM

still grows exponentially with the size of the system (#IRQs, #Tasks)

and reveals a large state machine. Compared with the previous

work [8], the size of the initial STG could be cut down signi_cantly

(�75.91 %) by the usage of ASMs instead of the control-_ow graph.

Still, the state-machine minimization can remove 85.5 percent of

the states. The resulting state-transition function takes a 15 bit

input vector (state: 10 bits, system event: 5 bits) and produces a 14

bit output signal (hart id: 4 bits).

We used the Xilinx Vivado 2015.2 toolchain to synthesize the

di_erent OSEK-V cores for the Zynq-7020 FPGA chip, which is

integrated into the ZedBoard platform. The Rocket’s pipeline was

constrained to run with at least 25 Mhz, while the FPGA features a

Fmax of 100 Mhz for a single logic unit.

As expected, the Figure 2 example resulted (see Table 2) only

in a small increase in FPGA resource usage (+127 memory LUTs),

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 178
International Conference on Recent Research in Science and Technology

when compared with the baseline Rocket core. This increase mainly

stems from the doubled register _le, since the synthesis tool uses

distributed RAM cells to implement the second register _le for the

additional hart (idle thread, thread T).

The I4Copter benchmark results in a quite larger core. Without

static-alarms, 9 percent more look-up tables (LUTs) are required;

these LUTs are mainly used for the SSM component (76.09 %). The

Table 3: Required Flash and RAM Space for the I4Copter

983 additionally required memory LUTs were used mostly for the

register _le (96.24 %) to hold the additional hart contexts. These

increased FPGA-resource requirements are directly connected to

the decreased memory consumption within the system image (see

Table 3); the SSM avoids most kernel code and the expanded register

_les avoid RAM consumption for the thread contexts.

When we add the static-alarm component (SSM+Alarms), the

FPGA resource consumption increases only negligible compared

to the variant without this additional hardware component. The

static memory consumption for the system image changed not

signi_cantly. For all variants, the Xilinx synthesis tool took at

least 10 minutes and was always able to ful_ll the 25 MHz timing

constraint for the pipeline.

6 DISCUSSION

Compared to other HW/SW codesign approaches, we focus on a

single application instead of a small class of applications to unveil

emergent system properties. Our narrowed focus exposes unique

properties, but we will also discuss the consequential limits.

6.1 Specialization vs. Standardization

We target real-time control systems based on customizable hardware

designs, where either a FPGA is employed or a custom chip

(ASIC) is intended. This appears to be in stark contrast with the

current industry trend of the domain to reduce HW/SW development

costs by consolidating custom designs into high-volume (and,

thus, cheaper) Commercial o_-the-shelf (COTS) platforms.

We are convinced, however, that the increasing degree of automation

on all levels of the customization process will partly reverse

this trend – on the longer term an “ASIC on demand” industry will

drastically reduce development and per-unit costs of custom hardware.

This is already happening, as Patterson and Nikolic outline

in a recent EETimes blog post [25]. OSEK-V goes well with this

vision as we stay completely compatible on the software side: The

application is developed against a standard RTOS interface – but

the automatically derived optimized implementation can optionally

be pushed into the hardware.

6.2 Application Domain and Scalability

Our approach is applicable, when the in_exibility of static tailoring,

culminated in application-speci_c chips, is tolerable. An OSEK-V

chip manifests the internal solution structure in silico; an employed

ASIC cannot be updated but can only be replaced. For a FPGA

system the situation is di_erent, there the OSEK-V processor would

become part of the deployed system update. Nevertheless, an update

of the OSEK-V core is only required if the application structure

(system con_guration and ASMs) changes; other updates can be

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 179
International Conference on Recent Research in Science and Technology

deployed as usual. Also, a partial push-down in hardware is possible

with a hierarchical scheduling scheme: high-priority threads can

be directly mapped to harts, while low-priority might be combined

in one hart and managed in software. This would provide low

latencies in critical situations and preserve _exibility otherwise.

The main scalability challenge is the state explosion of the STG.

In theory, a system could have an exponentially higher amount

of states compared to the number of threads and interrupts. Even

when feasible, this burden would precipitate in long analysis and

construction times. Nevertheless, we could show that our prototypical

implementation handles real-world scenarios faster than the

resulting hardware description could be synthesized.

The hardware scalability is determined by two cost factors: the

register _le and the SSM logic. Since the register _le has to hold n

thread contexts, we must allocate the storage capacity. However, it

scales linearly with the number of hardware threads and it could

be placed in the FPGA’s block RAM. The SSM logic scales with

the application complexity and the external indeterminism the

system has to face. Small systems that come with a large knowledge

about the surrounding environment will bene_t the most from the

instantiation of the RTOS semantic in hardware.

Besides the classic real-time control systems used in industry, we

see the emerging IoT _eld as a possible application domain. When

small control systems become ubiquitous, the trade-o_ between

specialization and _exibility will be renegotiated. IoT systems are

sold in large numbers, strive a high price pressure, and are tightly

coupled to the task and the life span of the employed device. We

believe that application-speci_c highly tailored chips are a good _t

with these changing design factors.

6.3 Restrictions on Semantic and Application

Besides scalability issues, the restriction we put on (1) the RTOS

semantics and (2) the application structure is a threat to the general

applicability of our semantic extraction. In essence, the STG

includes the inherent determinism that is available at compile time

due to the RTOS semantics and its utilization by the application;

even in the presence of external interrupts. While this works reasonably

well for _xed-priority scheduling, the usefulness is limited

on systems that o_er signi_cantly less determinism, such as an

RTOS with an earliest deadline _rst (EDF) scheduler or any other

scheduler that performs online acceptance tests. On the application

side, all interactions with the RTOS have to be detectable at compile

time. This forbids any sort of dynamic code loading, the invocation

of syscalls via function pointers, and syscall arguments that are not

computable at compile time.

Nevertheless, for many domains these restrictions impose little

impact in practice – they are prescribed and demanded by the relevant

industry and real-time safety standards anyway: EDF scheduling,

for instance, is barely used in embedded control systems;

the relevant industry standards (such as OSEK/AUTOSAR [23, 2],

ARINC 653 [1], μITRON [28], but also POSIX.4) all employ _xedpriority

scheduling; the usage of function pointers and any sort

of dynamic code modi_cations is discouraged by the relevant coding

and safety standards (e.g., [10, 13]). In summary, most of our

requirements have to be ful_lled anyway by embedded control

systems that needs to pass certi_cation.

6.4 Predictable RTOS Implementation

Real-time developers use worst-case execution time (WCET) analysis

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 180
International Conference on Recent Research in Science and Technology

to give upper bounds to the execution budget a job requires.

Tight bounds will simplify the provisioning required to obtain a

timing-predictable system. We can foster our predictive power by

improving the analysis itself, or by making the underlying platform

more predictable in the _rst place. Like the T-CREST/Patmos

project [27], OSEK-V provides a more predictable processor platform

for real-time applications.

With OSEK-V, the in_uence of the RTOS on the timing behavior

is minimized. An SSM activation requires only a few cycles, which

are dominated by the instruction-fetch delay for a re-scheduled

hart. The SSM execution itself does not evict any cache lines; only

the required pipeline _ush in_uences the application. Furthermore,

the static-alarm component o_oads periodic system orchestration

and, thereby, reduces the interrupt load.

Though timeliness is an important aspect of predictability, security

becomes more and more of an issue, especially when control

systems are connected to a (public) network. An OSEK-V core inherits

only the required RTOS semantic, cuts down on the trusted

code base, and pushes the controlling component into the more

trustable domain of hardware implementations. When combined

with tailored memory protection, where a hart switch implies a

protection-domains switch, perfect isolation could be achieved

without executing a single kernel instruction. However, that is a

topic of further research. RELATEDWORK

Interpreting the OS interface as an extension to the actual processor

interface that de_nes a hierarchical machine [29] is an established

view in the systems community. Therefore, it is nearby to resolve

the partial interpretation of syscalls by moving the OS (or parts

thereof) into the (custom) hardware to improve on di_erent nonfunctional

properties.

HybridThreads [3] accomplishes low run-time overhead and fast

interrupt handling by placing OS component besides the actual processor.

Scheduling decisions are dispatched in software through an

ISR. Sloth [11] achieves similar advantages for OSEK on standard

hardware by delegating all scheduling and dispatching to the interrupt

hardware. The FlexPRET processor [35], which also exposes

a RISC-V instruction set architecture, achieves a predictable execution

of mixed-criticality systems through _ne-grained hardware

multithreading, while inter-thread dependencies and synchronization

are not considered. The ReconOS project [18], in contrast,

provides a uni_ed OS interface, resembling POSIX, for threads and

hardware components; coordination and synchronization is still

done in software. Mooney and Blough [21] instantiate OS components

in hardware to provide an application-speci_c platform;

the developer can manually select pre-built components, which are

orthogonal to the core services. In contrast to all these approaches,

OSEK-V performs an in-depth tailoring of the RTOS: We catch the

RTOS semantic from the viewpoint of a speci_c application instead

of reproducing a (generic) software implementation in hardware.

Furthermore, we directly integrate components into the processor

pipeline to achieve _ne-grained and application-speci_c tailoring.

In essence, OSEK-V derives its tailored RTOS semantic by a complete

specialization of each syscall at each call site. This somewhat

resembles the path-speci_c syscall optimization known from Synthesis

[26, 19] or partial specialization as provided by the Tempo

[20] framework. Both of these, however, specialize at run time,

which (a) requires expensive run-time support and (b) facilitates

probabilistic optimizations that can be reverted when necessary. In

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 181
International Conference on Recent Research in Science and Technology

contrast, OSEK-V is tailored at compile-time, so all specializations

have to be sound and complete in the sense that the resulting RTOS

instance can be represented as an FSM.

The usage of FSMs as a whole-system model has also been proposed

for deeply embedded sensor nodes to enhance simplicity and

energy e_ciency: SenOS [14] is a software event dispatcher and

executor for multiple manually-encoded state machines. Kothari

et al. [16] derive compact state machines (< 16 states) from TinyOS

programs by symbolic execution to foster understanding of existing

applications.

8 CONCLUSION

With OSEK-V, we explore the HW/SW design space for eventtriggered

_xed-priority real-time systems at the hardware–OS boundary.

Starting from a single application and the standardized OSEKOS

API, we extract the actual used RTOS behavior as a _nite-state

machine. This system state machine is triggered by syscalls and

interrupts and controls the thread dispatching. The OSEK-V core

maps each RTOS thread to a hardware thread and is accompanied

by application-speci_c hardware components that implement

the extracted RTOS semantic. Thereby, we unveil desirable nonfunctional

properties, like low event latencies (�79 % average IRQ

lock times), interference-reduced RTOS execution (�47 % cache

stalls in the kernel), and fast thread re-scheduling (�81 % cycles

for dispatching syscalls). These improvements come at moderate

FPGA cost of 10 percent more LUTs and 86 distributed memory

cells per mapped RTOS thread.

REFERENCES

[1] AEEC. Avionics Application Software Standard Interface (ARINC Speci_cation

653-1). ARINC Inc, 2003.

[2] AUTOSAR. Speci_cation of Operating System (Version 5.1.0). Tech. rep. Automotive

Open System Architecture GbR, 2013.

[3] Jason Agron,Wesley Peck, Erik Anderson, David Andrews, Ed Komp, Ron Sass,

Fabrice Baijot, and Jim Stevens. “Run-Time Services for Hybrid CPU/FPGA

Systems on Chip”. In: RTSS ’06. 2006. doi: 10.1109/RTSS.2006.45.

[4] H. Almatary, N.C. Audsley, and A. Burns. “Reducing the Implementation Overheads

of IPCP and DFP”. In: RTSS ’15. 2015. doi: 10.1109/RTSS.2015.35.

[5] Manfred Broy. “Challenges in Automotive Software Engineering”. In: ICSE ’06.

2006. doi: 10.1145/1134285.1134292.

[6] Wayne P. Burleson, Jason Ko, Douglas Niehaus, Krithi Ramamritham, John

A. Stankovic, Gary Wallace, and Charles C. Weems. “The Spring Scheduling

Coprocessor: A Scheduling Accelerator”. In: IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 7.1 (1999). doi: 10.1109/92.748199.

[7] S. Devadas, Hi-Keung Ma, A.R. Newton, and A. Sangiovanni-Vincentelli. “MUSTANG:

state assignment of _nite state machines targeting multilevel logic

implementations”. In: Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on 7.12 (1988). doi: 10.1109/43.16807.

[8] Christian Dietrich, Martin Ho_mann, and Daniel Lohmann. “Back to the Roots:

Implementing the RTOS as a Specialized State Machine”. In: OSPERT ’15. 2015.

[9] Christian Dietrich, Martin Ho_mann, and Daniel Lohmann. “Cross-Kernel

Control-Flow-Graph Analysis for Event-Driven Real-Time Systems”. In: LCTES

’15. 2015. doi: 10.1145/2670529.2754963.

[10] Guidelines for the Use of the C Language in Critical Systems (MISRA-C). 2004.

[11] Wanja Hofer, Daniel Lohmann, Fabian Scheler, andWolfgang Schröder-Preikschat.

“Sloth: Threads as Interrupts”. In: RTSS ’09. (Dec. 1–4, 2009). 2009. doi: 10.1109/

RTSS.2009.18.

[12] John Hopcroft. An n log n algorithm for minimizing states in a _nite automaton.

Tech. rep. Computer Science Department, University of California, 1971.

[13] ISO 26262-4. ISO 26262-4:2011: Road vehicles – Functional safety – Part 4: Product

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 182
International Conference on Recent Research in Science and Technology

development at the system level. 2011.

[14] Tae-Hyung Kim and Seongsoo Hong. “State Machine Based Operating System

Architecture for Wireless Sensor Networks”. In: Parallel and Distributed Computing:

Applications and Technologies. Vol. 3320. LNCS. 2005. doi: 10.1007/978-

3-540-30501-9_158.

[15] Paul Kohout, Brinda Ganesh, and Bruce Jacob. “Hardware Support for Real-

Time Operating Systems”. In: CODES+ISSS ’03. 2003. doi: 10.1145/944645.

944656.

[16] Nupur Kothari, Todd Millstein, and Ramesh Govindan. “Deriving State Machines

from TinyOS Programs Using Symbolic Execution”. In: IPSN ’08. 2008.

doi: 10.1109/IPSN.2008.62.

[17] Yunsup Lee, A. Waterman, R. Avizienis, H. Cook, Chen Sun, V. Stojanovic,

and K. Asanovic. “A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V

processor with vector accelerators”. In: European Solid State Circuits Conference

(ESSCIRC), ESSCIRC 2014 - 40th. 2014. doi: 10.1109/ESSCIRC.2014.6942056.

[18] Enno Lübbers and Marco Platzner. “ReconOS: Multithreaded Programming for

Recon_gurable Computers”. In: ACM Trans. Embed. Comp. Syst. 9.1 (2009). doi:

10.1145/1596532.1596540.

[19] Henry Massalin and Calton Pu. “Threads and Input/Output in the Synthesis

Kernel”. In: SOSP ’89. 1989. doi: 10.1145/74850.74869.

[20] Dylan McNamee et al. “Specialization Tools and Techniques for Systematic

Optimization of System Software”. In: ACM Trans. Comp. Syst. 19.2 (2001). doi:

10.1145/377769.377778.

[21] Vincent J. Mooney and Douglas M. Blough. “A Hardware-Software Real-Time

Operating System Framework for SoCs”. In: IEEE Journal on Design and Test of

Computers 19.6 (2002). doi: 10.1109/MDT.2002.1047743.

[22] Edward F. Moore. “Gedanken-experiments on sequential machines”. In: Automata

studies. Annals of mathematics studies, no. 34. 1956.

[23] OSEK/VDX Group. Operating System Speci_cation 2.2.3. Tech. rep. http://portal.

osek-vdx.org/files/pdf/specs/os223.pdf, visited 2014-09-29. OSEK/VDX Group,

2005.

[24] Arnaldo SR Oliveira, Luís Almeida, and António B Ferrari. “The ARPA-MT

embedded SMT processor and its RTOS hardware accelerator”. In: Industrial

Electronics 58.3 (2011). doi: 10.1109/TIE.2009.2028359.

[25] David Patterson and Borivoje Nikolic. Agile Design for Hardware. EE|Times

blog post. 2015. url: http://www.eetimes.com/author.asp?section_id=36&doc_

id=1327291.

[26] Calton Pu, Henry Massalin, and John Ioannidis. “The Synthesis Kernel”. In:

Computing Systems 1.1 (1988).

[27] Martin Schoeberl et al. “T-CREST: Time-predictable multi-core architecture

for embedded systems”. In: Journal of Systems Architecture 61.9 (2015). doi:

10.1016/j.sysarc.2015.04.002.

[28] Hiroaki Takada and Ken Sakamura. “μITRON for Small-Scale Embedded Systems”.

In: IEEE Micro 15.6 (1995). doi: 10.1109/40.476258.

[29] Andrew S. Tanenbaum. Structured Computer Organization. Fifth. 2006.

[30] David Tennenhouse. “Proactive Computing”. In: CACM (2000).

[31] Peter Ulbrich, Rüdiger Kapitza, Christian Harkort, Reiner Schmid, and Wolfgang

Schröder-Preikschat. “I4Copter: An Adaptable and Modular Quadrotor

Platform”. In: SAC ’11. 2011.

[32] D. Varma and E.A. Trachtenberg. “A fast algorithm for the optimal state assignment

of large _nite state machines”. In: ICCAD ’88. 1988. doi: 10.1109/ICCAD.

1988.122483.

[33] T. Villa and A. Sangiovanni-Vincentelli. “NOVA: State Assignment of Finite

State Machines for Optimal Two-level Logic Implementations”. In: 26th ACM/IEEE

Design Automation Conference. DAC ’89. 1989. doi: 10.1145/74382.74437.

[34] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovic. The

RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.0. Tech. rep.

UCB/EECS-2014-54. EECS Department, University of California, Berkeley,

2014.

Volume 10, Issue 12, Dec 2020 ISSN 2581 – 4575 Page 183
International Conference on Recent Research in Science and Technology

[35] Michael Zimmer, David Broman, Chris Shaver, and Edward A. Lee. “FlexPRET:

A processor platform for mixed-criticality systems”. In: RTAS ’14. 2014. doi:

10.1109/RTAS.2014.6925994.

