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Abstract: 

A theoretical analysis of unsteady free convective heat and mass transer flow past moving 

surface of an electrically conducting and viscous incompressible fluid under the influence of 

a uniform magnetic field with heat absroption is presented. The governing partial differential 

equations are reduced to a system of nonlinear ordinary differential equations and solved 

analytically using perturbation technique. The numerical results are presented graphically for 

different values of the parameters entering into the problem.  
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1.   INTRODUCTION: 

As a consequence of non-homogeneous fields of volumetric forces such as Coriolis, 

MHD, gravitational, centrifugal, etc., natural or free convection occurs. Many researchers 

have examined this occurrence. Some of the many real-world contexts in which free or 

natural convection flow is useful include: cooling electronic equipment; geothermal systems; 

processing materials; designs related to thermal insulation; energy system security; 

atmospheric fluxes; air conditioning systems; etc. There is a vast array of practical uses for 

heat transfer mechanisms involving the motion of materials through fluids. Both temperature 

differences and concentration fluctuations contribute to the speed of some Earth flows. 

Buoyancy is particularly important in atmospheric research because differences in air and 

ground temperatures may lead to complicated flow patterns. The many industrial, scientific, 

and engineering processes that make use of free convection have piqued the attention of 

many theoretical models as well as experimental and practical components of studying the 

coupled transport of heat and mass. Newtonian and non-Newtonian fluids with elliptical, 

rectangular, cube, triangle, and circular geometries and a variety of boundary conditions have 

been addressed in the literature using computational, theoretical, and experimental methods. 

The flow of an electrically conducting fluid may be controlled by applying an external 

magnetic field. You may also adjust the pace of transmission. Many fields of study and 

technology have practical uses in industry, such as nuclear cooling reactors, plasma research, 

crystal growth, petroleum extraction, boundary layer control in aerodynamics, and many 

more. So, the study of the most broad settings of MHD, including the impact of an external 

magnetic field on electrically conduction fluid, has recently attracted fresh interest from 

academics. 

From an engineering and industrial perspective, there are several practical applications of 

researching the Soret and Dufour effects along MHD flows when heat mass transfer happens 

simultaneously in moving fluids. These effects have received substantial attention from 

writers, and they include Hall accelerators and MHD power generators, among others. Kao et 

al. [1] investigated the reaction of a free convective flow to a flat plate with a temperature 

discontinuity on the wall and the solution heat transfer. For the evenly accelerated and 

impulsive motion of the plate, Rapits et al. [2] investigated the effect of a static moving 
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magnetic field in an electrically conducting fluid. Research by Tokis et al. [3] examined the 

effects of a fluid-fixed, uniformly-moving magnetic field. After fully developed MHD free 

convective flow, Prasad et al. [4] examined the impacts of temperature transport 

characteristics, taking viscous and Ohmic dissipation into account. Using a lid-driven half 

annulus closure packed with Fe3O4-water Nanofluid, Sheikholeslami et al. [5] studied the 

forced convective heat transfer outcomes of a non-uniform magnetic field. Presumably, the 

fluid's magnetization varies linearly with the magnitude of both the temperature and the 

magnetic field. The numerical investigation of heat transfer and hydrodynamic properties in 

mixed convective nanofluid flows with sinusoidal walls subjected to a magnetic field was 

carried out by Rashidi et al. [6]. Using the spectrum relaxation approach, Shateyi et al. [7] 

investigated the natural convective heat mass transfer flow in a multi-harmonic 

heterogeneous (MHD) system subjected to thermal radiation and chemical reactions over a 

permeable moving vertical plate including a convective boundary state. Researchers Khadijah 

et al. [8] used ramping boundary flow, which is based on time-dependent 

magnetohydrodynamics, to examine normal convective viscous fluid in an annulus. Improved 

natural convective heat transmission is the goal of this investigation, which employs zigzag-

shaped ribs placed on vertical, isothermal, heated surfaces. In their theoretical study, Ilias et 

al. [9] examined the nanofluid flow of an unstablely oriented MHD boundary layer heat 

transfer over an inclined plate on the inner edge. Unstable fourth-grade MHD fluid flow 

employing a Homotopy perturbation system under magnetic field and suction/injection action 

was investigated by Fenuga et al. [10] along with the mathematical model and its solution. In 

their study on the unsteady MHD flow, Prasad et al. [11] calculated the effects of heat 

radiation and absorption on a Kuvshinski fluid model including a chemical reaction in an 

aligned magnetic field. Effect of an aligned magnetic field on an upper convicted Maxwell 

fluid flowing over an inclined stretching sheet was studied by Bilal et al. [12]. 

In free convection, the only thing that happens is the movement of the fluid due to buoyancy, 

which is a way to transfer heat. The relevance of natural convections to engineering and the 

natural world has motivated several researchers to devote the last two decades to studying 

these phenomena. Ahmed [13] investigated the influence of radiation and Soret effects on 

transient magnetohydrodynamic free convection from an infinite vertical plate that was begun 

impulsively. The effects of thermal radiation on magnetohydrodynamic (MHD) flow, which 

include heat and mass transport of a micropolar fluid between two vertical walls, were 

studied by Patel [14]. Chemical processes were investigated by Reddy et al. [15] as they 

pertain to magnetohydrodynamic natural flow in a porous media via an exponentially 

stretched sheet, taking into account the existence of heat source/sink and viscous dissipation. 

Magnetohydrodynamic free convective flow in a channel filled with nanofluids was studied 

by Jha et al. [16] in relation to heat sources and sinks. Matta et al. [17] observed 

magnetohydrodynamic free convection flow around a semi-infinite moving vertical porous 

plate with a heat sink and chemical reaction, and they examined the impact of viscous 

dissipation on this flow. The effect of the Arrhenius activation energy on 

magnetohydrodynamic micropolar nanofluid flow via a porous stretched sheet was studied by 

Borah et al. [18], taking into account the viscous dissipation and the heat source. Akhtar et al. 

[19] investigated the effects of radiation and heat dissipation on magnetohydrodynamic 

convective flow with a heat sink. 
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This research work presents a theoretical analysis of unsteady free convective heat 

and mass transer flow past moving surface of an electrically conducting and viscous 

incompressible fluid under the influence of a uniform magnetic field with heat absroption. 

The governing partial differential equations are reduced to a system of nonlinear ordinary 

differential equations and solved analytically using perturbation technique. The numerical 

results are presented graphically for different values of the parameters entering into the 

problem.  

 

2.   MATHEMATICAL FORMULATION: 

Our focus is on the unsteady two-dimensional flow of a laminar, incompressible, viscous, 

electrically conducting, and heat-absorbing fluid as it passes through a uniform porous 

medium embedded in a semi-infinite inclined moving surface with an acute angle to the 

vertical. This flow is subjected to a uniform transverse magnetic field and is accompanied by 

thermal and concentration buoyancy effects. We suppose that the flow is along the x-axis, 

which follows the semi-infinitely slanted sliding plate, and the y-axis, which is perpendicular 

to it. A uniformly strong magnetic field B0 is applied perpendicular to the flow direction. 

 

 
Fig.1: Flow geometry 

Our presumptions are as follows: 

1. The magnetic Reynolds number and transverse applied magnetic field are 

negligible.  

2. There is almost no hall effect and generated magnetic field.  

3. A constant velocity is maintained by the permeable inclined plate as it advances in 

the direction of fluid flow.  
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4. A minor perturbation law that increases exponentially is followed by the free 

stream velocity.  

5. The suction velocity, wall concentration, and temperature all change exponentially 

with time.  

 

The following cartesian formulation of the governing equations is possible in light of the 

assumptions given above: 

: 
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This investigation looks just at the magnetic and viscous dissipations. The temperature and 

concentration buoyancy effects are denoted by the third and fourth components on the right 

side of the momentum equation (2), for example. Furthermore, the heat absorption effect is 

represented by the final part of the energy equation (3).  It is appropriate to use the following 

boundary conditions on the fields of velocity, temperature, and concentration:  
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The suction velocity at the plate surface is clearly a function of time alone, as shown by Eq. 

(1). Accordingly, we think it has the following exponential shape.: 
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where A is a real positive constant, ε and εA are small less than unity, and V0is a scale 

suction velocity which has non-zero positive constant. Outside the boundary layer, Eq (2) 

gives 
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It is convenient to employ the following dimensionless variables: 
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In view of Eqs. (7)-(9), Eqs.(2)-(4) reduce to the following dimensionless form: 
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3.3.   SOLUTION OF THE PROBLEM: 

There is no closed form solution to the system of partial differential equations represented by 

Eqs. (10)–(12). But it simplifies to a system of analytically solvable ordinary differential 

equations in a dimensionless form. Three variables—velocity, temperature, and 

concentration—can be represented in this way:  
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Substituting Eq. (1) in to Eqs. (10) – (12), equating the harmonic and non-harmonic terms, 

and neglecting the higher-order terms of O(ε2), one obtains the following pairs of equations 

for ),,( 000 hu  and ),,( 111 hu  . 
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Where a prime denotes ordinary differentiation with respect to y. The corresponding 

boundary conditions can be written as  
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Solutions of equations canbe shown to be: 
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In view of the above solutions, the velocity, temperature and concentration distributions in 

the boundary layer becomes  
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The skin-friction coefficient, the Nusselt number and the sherwood number are important 

physical parameters for this type of boundary-layer flow.  

 

Skin-friction coefficient: 

From velocity field, now, we study the skin-friction coefficient which is given in non-

dimensional form as follows:  
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Nusselt number: 

From temperature field, now, we study the Nusselt number which is given in non-

dimensional form as follows: 
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Sherwood number: 

From concentration field, now we study Sherwood number which is given in non-

dimensional form as follows: 
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4.   RESULTS AND DISCUSSION: 

The analytical findings mentioned earlier were subjected to numerical examination, and 

Figures 2–10 display a sample set of results. As an example of how the heat absorption 

coefficient S, the thermal Grashof number Gr, the solutal Grashof number Gm, the Prandtl 

number, the magnetic field parameter M, the permeability parameter k, and the Schmidt 

number Sc all play a role, these data are taken. Water vapor is assumed to have a Schmidt 

number Sc of 0.60. A cooling issue is indicated by the use of physical variables Gr = 2 and 

Gm = 1 throughout the computations. Figure 2 shows how the momentum boundary-layer 

thickness changes as the intensity of the magnetic field increases. It is now known that a 

magnetic field may reduce the velocity of a fluid by acting as a drag force that resists the flow 

of the fluid, thereby dampening the velocity field. Both the velocity and temperature profiles 

are affected by the heat absorption coefficient S, as seen in Figures 3 and 4, respectively. In a 

physical sense, the fluid's temperature tends to drop when heat absorption (thermal sink) 

effects are present. As a consequence, the fluid's velocity is reduced since the thermal 

buoyancy effects are lessened. Both the velocity and temperature distributions in figures 3 

and 4 fall as S rises, clearly indicating these behaviors. The hydrodynamic boundary layer, 

which measures velocity, and the thermal boundary layer, which measures temperature, both 

diminish with increasing heat absorption effects. Figures 5 and 6 demonstrate the impact of 

the Prandtl number Pr on the velocity profile and the temperature profile, respectively. Both 

the fluid's velocity and temperature decrease as the Prandtl number increases. For one thing, a 

thermal boundary layer with a lower Pr value is more uniformly heated than one with a 

higher Pr value. When the thermal conductivity increases and the Prandtl number decreases, 

this effect takes place. Consequently, with smaller Prandtl numbers, heat may dissipate from 

a heated surface more rapidly than with larger ones. In Figure 7, we can see how the thermal 

Grashof number affects the velocity. In the boundary layer, the thermal Grashof number 

indicates how much of an influence thermal buoyant force has in comparison to the viscous 

hydrodynamic force. It is not surprising that the increased thermal buoyancy force causes the 

velocity to rise. The peak velocities also rise sharply close to the porous plate as Gr rises, 

before gradually falling to the free stream velocity. For different values of the solutal Grashof 

number Gm, Figure 8 shows typical boundary layer velocity patterns. The species buoyancy 

force to viscous hydrodynamic force ratio is defined by the solutal Grashof number Gm. 
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Species buoyancy forces rise, which is to be anticipated, leading to higher fluid velocities and 

more noticeable peaks. In the region around the plate, the velocity distribution reaches a peak 

and then drops down to the free stream value. Figure 9 shows the velocity profile and Figure 

10 shows the concentration profile how the Schmidt number Sc affects them. The 

concentration falls with increasing Schmidt number. This slows the fluid down since the 

concentration buoyancy effects are less. At the same time as the velocity and concentration 

profiles are becoming smaller, the boundary layers around them are getting smaller as well. 

Figures 9 and 10 make these actions very obvious. Figure 11 shows the effects of k on 

velocity profiles, and its behavior is amplified. 

 
Figure 2: Parameter M impact on u profiles  

 

 
Figure 3: Parameter S impact on u profiles 
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Figure 4: Parameter S impact on θ profiles 

 
Figure 5: Parameter Pr impact on u profiles 

 

 

 
Figure 6: Parameter Pr impact on θ profiles 
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Figure 7: Parameter Gr impact on u profiles 

 

 
Figure 8: Parameter Gm impact on u profiles 

 

 
Figure 9: Parameter Sc impact on u  profiles 
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Figure 10: Parameter Sc impact on C profiles 

 
Figure 11: Parameter k impact on  u profiles 

 

 

 

5.   CONCLUSIONS: 

Unsteady mixed-mode heat-and-mass-transfer (MHCT) flows across a semi-infinite 

slanted permeable moving plate immersed in a porous material that absorbs heat were 

described by the governing equations. A transverse magnetic field was applied to the flow 

while the plate velocity was kept constant. The resultant linked partial equations are solved 

using a perturbation approach. The study's findings are as follows: 

• A reduction in fluid velocity was seen when the concentration level was reduced as 

the Schmidt number was raised. 

• The thermal boundary layer is reduced as the Prandtl number and heat absorption rise. 

• Increasing the heat absorption coefficient, angle of inclination, magnetic parameter, 

and Prandtl number causes a drop in velocity, but increasing the porous parameter, 

thermal, and solutal Grashof numbers causes the opposite tendency.   
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