

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

DRUG RECOMMENDATION SYSTEM BASED ON SENTIMENT ANALYSIS OF DRUG REVIEWS USING MACHINE LEARNING

Lakamsani Haritha (MCA Scholar), B V Raju College, Vishnupur, Bhimavaram, West Godavari District, Andhra Pradesh, India, 534202.

G.Ramesh Kumar, B V Raju College, Vishnupur, Bhimavaram, West Godavari District, Andhra Pradesh, India, 534202.

Abstract

Since coronavirus has shown up, inaccessibility of legitimate clinical resources is at its peak, like the shortage of specialists and healthcare workers, lack of proper equipment and medicines etc. The entire medical fraternity is in distress, which results in numerous individual's demise. Due to unavailability, individuals started taking medication independently without appropriate consultation, making the health condition worse than usual. As of late, machine learning has been valuable in numerous applications, and there is an increase in innovative work for automation. This paper intends to present a drug recommender system that can drastically reduce specialists heap. In this research, we build a medicine recommendation system that uses patient reviews to predict the sentiment using various vectorization processes like Bow, TF-IDF,Word2Vec, and Manual Feature Analysis, which can help recommend the top drug for a given disease by different classification algorithms. The predicted sentiments were evaluated by precision, recall, f1score, accuracy, and AUC score. The results show that classifier LinearSVC using TF-IDF vectorization outperforms all other models with 93% accuracy.

1. INTRODUCTION

With the number of corona virus cases growing exponentially, the nations are facing a shortage of doctors, particularly in rural areas where the quantity of specialists is less compared to urban areas. A doctor takes roughly 6 to 12 years to procure the necessary qualifications. Thus, the number of doctors can't be expanded quickly in a short time frame. A Telemedicine framework ought to be energized as far as possible in this difficult time [1].

Clinical blunders are very regular nowadays. Over 200 thousand individuals in China and 100 thousand in the USA are affected every year because of prescription mistakes. Over 40% medicine, specialists make mistakes while prescribing since specialists compose the solution as referenced by their knowledge, which is very restricted [2][3]. Choosing the toplevel medication is significant for patients who need specialists that know wide based information about microscopic organisms, antibacterial medications, and patients [6]. Every day a new study comes up with accompanying more drugs, tests, accessible for clinical staff every day. Accordingly, it turns out to be progressively challenging for doctors to choose which treatment or medications to give to a patient based on indications, past clinical history.

With the exponential development of the web and the web-based business industry, item reviews have become an imperative and integral factor for acquiring items worldwide. Individuals worldwide become adjusted to analyze reviews and websites first before settling on a choice to buy a thing. While most of past exploration zeroed in on rating

A peer reviewed international Journal ISSN: 2457-0362 www.ijarst.in

expectation and proposals on the E-Commerce field, the territory of medical care or clinical therapies has been infrequently taken care of. There has been an expansion in the number of individuals worried about their well-being and finding a diagnosis online. As demonstrated in a Pew American Research center survey directed in 2013 [5], roughly 60% of grown-ups searched online for health related subjects, and around 35% of users looked for diagnosing health conditions on the web. A medication recommender framework is truly vital with the goal that it can assist specialists and help patients to build their knowledge of drugs on specific health conditions.

A recommender framework is a customary system that proposes an item to the user, dependent on their advantage and necessity. These frameworks employ the customers' surveys to break down their sentiment and suggest a recommendation for their exact need. In the drug recommender system, medicine is offered on a specific condition dependent on patient reviews using sentiment analysis and feature engineering. Sentiment analysis is a progression of strategies, methods, and tools for distinguishing and extracting emotional data, such as opinion and attitudes, from language [7]. On the other hand, Featuring engineering is the process of making more features from the existing ones; it improves the performance of models.

2. EXISTING SYSTEM

The study [9] presents GalenOWL, a semantic-empowered online framework, to help specialists discover details on the medications. The paper depicts a framework that suggests drugs for a patient based on the patient's infection, sensitivities, and drug interactions. For empowering GalenOWL, clinical data and terminology first converted to ontological terms utilizing worldwide standards, such as ICD-10 and UNII, and then correctly combined with the clinical information. Leilei Sun [10] examined large scale treatment records to locate the best treatment prescription for patients. The idea was to use an efficient semantic clustering algorithm estimating the similarities between treatment records. Likewise, the author created a framework to assess the adequacy of the suggested treatment. This structure can prescribe the best treatment regimens to new patients as per their demographic locations and medical complications. An Electronic Medical Record (EMR) of patients gathered from numerous clinics for testing.

The result shows that this framework improves the cure rate. In this research [11], multilingual sentiment analysis was performed using Naive Bayes and Recurrent Neural Network (RNN). Google translator API was used to convert multilingual tweets into the English language. The results exhibit that RNN with 95.34% outperformed Naive Bayes, 77.21%.

The study [12] is based on the fact that the recommended drug should depend upon the patient's capacity. For example, if the patient's immunity is low, at that point, reliable medicines ought to be recommended. Proposed a risk level classification method to identify the patient's immunity. For example, in excess of 60 risk factors, hypertension, liquor addiction, and so forth have been adopted, which decide the patient's capacity to shield himself from infection. A web-based prototype system was also created, which uses a

A peer reviewed international Journal ISSN: 2457-0362 www.ijarst.in

decision support system that helps doctors select first-line drugs. Xiaohong Jiang et al. [13] examined three distinct algorithms,

decision tree algorithm, support vector machine (SVM), and backpropagation neural network on treatment data. SVM was picked for the medication proposal module as it performed truly well in each of the three unique boundaries - model exactness, model proficiency, model versatility. Additionally, proposed the mistake check system to ensure analysis, precision and administration quality. Mohammad Mehedi

Hassan et al. [14] developed a cloudassisted drug proposal (CADRE). As per patients' side effects, CADRE can suggest drugs with top-N related prescriptions.

This proposed framework was initially founded on collaborative filtering techniques in which the medications are initially bunched into clusters as indicated by the functional description data. However, after considering its weaknesses like computationally costly, cold start, and information sparsity, the model is shifted to a cloud-helped approach using tensor decomposition for advancing the quality of experience of medication suggestion.

Disadvantages

In the existing work, the system did not implement an exact sentiment analysis for large data sets.

This system is less performance due to lack Data Classification and Data Fragmentation technique.

3. PROPOSED SYSTEM

A recommender framework is a customary system that proposes an item to the user, dependent on their advantage and necessity. These frameworks employ the customers' surveys to break down their sentiment and suggest a recommendation for their exact need. In the drug recommender system, medicine is offered on a specific condition dependent on patient reviews using sentiment analysis and feature engineering. Sentiment analysis is a progression of strategies, methods, and tools for

distinguishing and extracting emotional data, such as opinion and attitudes, from language [7]. On the other hand, Featuring engineering is the process of making more features from the existing ones; it improves the performance of models.

Advantages

The system is more effective since it presents the proposed algorithm used in natural language processing responsible for counting the number of times of all the tokens in review or document...

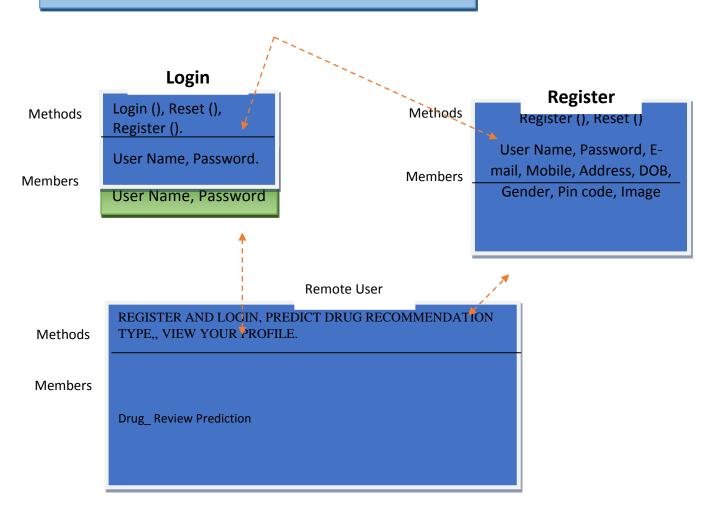
The system has exact sentiment analysis prediction techniques for Data Cleaning and Visualization.

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

Class Diagram:

Service Provider

Methods


Login, Browse and Train & Test Data Sets View Trained and Tested Accuracy in Bar Chart View Trained and Tested Accuracy Results View Prediction Of Drug Recommendation Type View Drug Recommendation Type Ratio

Download Trained Data Sets View Drug Recommendation Type Ratio

Results View All Remote Users

Members

Drug_ Review Prediction

4. CONCLUSIONS

Reviews are becoming an integral part of our daily lives; whether go for shopping, purchase something online or go to some restaurant, we first check the reviews to make the right decisions. Motivated by this, in this research sentiment analysis of drug reviews was studied

A peer reviewed international Journal ISSN: 2457-0362 www.ijarst.in

to build a recommender system using different types of machine learning classifiers, such as Logistic Regression, Perceptron, Multinomial Naive Bayes, Ridge classifier, Stochastic gradient descent, Linear SVC, applied on Bow, TF-IDF, and classifiers such as Decision Tree, Random Forest, Lgbm, and Cat boost were applied on Word2Vec and Manual features method. We evaluated them using five different metrics, precision, recall, f1score, accuracy, and AUC score, which reveal that the Linear SVC on TF-IDF outperforms all other models with 93% accuracy. On the other hand, the Decision tree classifier on Word2Vec showed the worst performance by achieving only 78% accuracy. We added best-predicted emotion values from each method, Perceptron on Bow (91%), Linear SVC on TF-IDF (93%), LGBM on Word2Vec (91%), Random Forest on manual features (88%), and multiply them by the normalized useful Count to get the overall score of the drug by condition to build a recommender system. Future work involves comparison of different oversampling techniques, using different values of n-grams, and optimization of algorithms to improve the performance of the recommender system.

5. REFERENCES

- [1] Telemedicine, https://www.mohfw.gov.in/pdf/Telemedicine.pdf
- [2] Wittich CM, Burkle CM, Lanier WL. Medication errors: an overview for clinicians. Mayo Clin Proc. 2014 Aug;89(8):1116-25.
- [3] CHEN, M. R., & WANG, H. F. (2013). The reason and prevention of hospital medication errors. Practical Journal of Clinical Medicine, 4.
- [4] Drug Review Dataset, https://archive.ics.uci.edu/ml/datasets/Drug% 2BReview% 2BDataset% 2B% 2528Drugs.com% 2529#
- [5] Fox, Susannah, and Maeve Duggan. "Health online 2013. 2013." URL: http://pewinternet.org/Reports/2013/Health-online.aspx
- [6] Bartlett JG, Dowell SF, Mandell LA, File TM Jr, Musher DM, Fine MJ. Practice guidelines for the management of community-acquired pneumonia in adults. Infectious Diseases Society of America. Clin Infect Dis. 2000 Aug;31(2):347-82. doi: 10.1086/313954. Epub 2000 Sep 7.

PMID: 10987697; PMCID: PMC7109923.

- [7] Fox, Susannah & Duggan, Maeve. (2012). Health Online 2013. Pew Research Internet Project Report.
- [8] T. N. Tekade and M. Emmanuel, "Probabilistic aspect mining approach for interpretation and evaluation of drug reviews," 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, 2016, pp. 1471-1476, doi: 10.1109/SCOPES.2016.7955684.
- [9] Doulaverakis, C., Nikolaidis, G., Kleontas, A. et al. GalenOWL: Ontology-based drug recommendations discovery. J Biomed Semant 3, 14 (2012). https://doi.org/10.1186/2041-1480-3-14
- [10] Leilei Sun, Chuanren Liu, Chonghui Guo, Hui Xiong, and Yanming Xie. 2016. Data-driven Automatic Treatment Regimen Development and Recommendation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

A peer reviewed international journal ISSN: 2457-0362

www.ijarst.in

(KDD '16). Association for Computing Machinery, New York, NY, USA, 1865–1874. DOI:https://doi.org/10.1145/2939672.2939866

[11] V. Goel, A. K. Gupta and N. Kumar, "Sentiment Analysis of Multilingual Twitter Data using Natural Language Processing," 2018 8th International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 2018, pp. 208-212, doi: 10.1109/CSNT.2018.8820254.

[12] Shimada K, Takada H, Mitsuyama S, et al. Drug-recommendation system for patients with infectious diseases. AMIA Annu Symp Proc. 2005;2005:1112.