

Volume:13,Issue07,July2023 ISSN:2457-0362 Page 994

A Novel Machine Learning Approach for Estimation of Software Defects

Ms.M.ANITHA1, Ms. L.MEGHANA 2

#1 Assistant professor in the Master of Computer Applications in the SRK Institute of

Technology, Enikepadu, Vijayawada, NTR District

#2 MCA student in the Master of Computer Applications at SRK Institute of Technology,

Enikepadu, Vijayawada, NTR District

Abstract_ One of the most important components of software is its quality. Software designs

are becoming more sophisticated as demand grows, increasing the likelihood of software

failures. By repairing flaws, testers help to increase the quality of software. As a result, defect

analysis increases software quality dramatically. The project's resources and the effort of the

software developers can be allocated more efficiently for system development and quality

assurance operations thanks to effective system defect prediction on the front line of the

project life cycle. The main goal of this research is to compare seven machine learning

algorithms in the context of four NASA datasets collected from the public PROMISE

repository [12] in order to evaluate their competence in software defect prediction and

determine the best category. Overall, the results of the ensemble learners category in defect

prediction, which includes Random Forests (RF) and Bagging, are very similar to their

counterparts.

1.INTRODUCTION

The software industry is rapidly evolving

as a result of rising demand and

technological advancements. Defects will

eventually arise because the majority of

software development is done by people.

Defects are undesired or unacceptable

deviations in software documentation,

programmes, and data in general [1].

Defects may arise in requirements analysis

as a result of the product manager's

misinterpretation of the customer's needs,

and this error will then be carried over to

the system design phase. Inexperienced

developers might potentially cause defects

in the code. Defects have a substantial

impact on software quality, resulting in

higher software maintenance costs,

particularly in the healthcare industry, and

aircraft software defects can have fatal

implications. If a bug is discovered after

the product has been deployed, the

Volume:13,Issue07,July2023 ISSN:2457-0362 Page 995

development team will have to re-design

some software components, which will

increase development expenses. Defects

are a nightmare for reputable businesses.

Because of client unhappiness, their

reputation suffers, and their market share

suffers as a result. As a result, software

testing has emerged as one of the most

important areas of industry research [2].

As software development and complexity

have increased, the number of faults has

climbed to the point where traditional

manual procedures have become

inefficient and time-consuming. Automatic

fault categorization has become a research

hotspot thanks to the rise of machine

learning. In this study, we first go through

software flaws in depth and the numerous

categories that have been offered in the

literature, before moving on to the manual

classification methods proposed by various

scholars. Finally, we discuss the current

state of machine learning methods for

autonomous software detection.

2.LITERATURE SURVEY

2.1 S. Parnerkar, A. V. Jain, and C.

Birchha, ‘‘An approach to efficient

software bug prediction using

regression analysis and neural

networks,’’ Int. J. Innov. Res. Comput.

Commun. Eng., vol. 3, no. 10, Oct. 2015.

Machine Learning approaches are good in

solving problems that have less

information. In most cases, the software

domain problems characterize as a process

of learning that depend on the various

circumstances and changes accordingly. A

predictive model is constructed by using

machine learning approaches and

classified them into defective and non-

defective modules. Machine learning

techniques help developers to retrieve

useful information after the classification

and enable them to analyse data from

different perspectives. Machine learning

techniques are proven to be useful in terms

of software bug prediction. This study

used public available data sets of software

modules and provides comparative

performance analysis of different machine

learning techniques for software bug

prediction. Results showed most of the

machine learning methods performed well

on software bug datasets. The

advancement in software technology

causes an increase in the number of

software products, and their maintenance

has become a challenging task. More than

half of the life cycle cost for a software

system includes maintenance activities.

2.2 B. Liu, H. Qin, Y. Gong, W. Ge, M.

Xia, and L. Shi, ‘‘EERA-ASR: An

energy-efficient reconfigurable

Volume:13,Issue07,July2023 ISSN:2457-0362 Page 996

architecture for automatic speech

recognition with hybrid DNN and

approximate computing,’’ IEEE Access,

vol. 6, pp. 52227–52237, 2018.

This paper proposes a hybrid deep neural

network (DNN) for automatic speech

recognition and an energy-efficient

reconfigurable architecture with

approximate computing for accelerating

the DNN. To accelerate the hybrid DNN

and reduce the energy consumption, we

propose a digital–analog mixed

reconfigurable architecture with

approximate computing units, including a

binary weight network accelerator with

analog multi-chain delay-addition units for

bit-wise approximate computing and a

recurrent neural network accelerator with

approximate multiplication units for

different calculation accuracy

requirements. Implemented under TSMC

28nm HPC+ process technology, the

proposed architecture can achieve the

energy efficiency of 163.8TOPS/W for 20

keywords recognition and 3.3TOPS/W for

common speech recognition. Deep Neural

Networks (DNNs) that have many hidden

layers have been proven to outperform

traditional models (i.e., Markov models,

Gaussian mixture models) on a variety of

speech recognition benchmarks by a large

margin [1], [2].

2.3 N. Cummins, S. Amiriparian, G.

Hagerer, A. Batliner, S. Steidl, and B.

W. Schuller, ‘‘An image-based deep

spectrum feature representation for the

recognition of emotional speech,’’ in

Proc. 25th ACM Multimedia Conf.

(MM), 2017, pp. 478–484.

The outputs of the higher layers of deep

pre-trained convolutional neural networks

(CNNs) have consistently been shown to

provide a rich representation of an image

for use in recognition tasks. This study

explores the suitability of such an

approach for speech-based emotion

recognition tasks. First, we detail a new

acoustic feature representation, denoted as

deep spectrum features, derived from

feeding spectrograms through a very deep

image classification CNN and forming a

feature vector from the activations of the

last fully connected layer. We then

compare the performance of our novel

features with standardised brute-force and

bag-of-audio-words (BoAW) acoustic

feature representations for 2- and 5-class

speech-based emotion recognition in clean,

noisy and denoised conditions. The

presented results show that image-based

approaches are a promising avenue of

research for speech-based recognition

tasks. Key results indicate that deep-

spectrum features are comparable in

Volume:13,Issue07,July2023 ISSN:2457-0362 Page 997

performance with the other tested acoustic

feature representations in matched for

noise type train-test conditions; however,

the BoAW paradigm is better suited to

cross-noise-type train-test conditions.

Convolutional neural networks (CNNs)

have become increasingly popular in

machine learning research.

4.PROPOSED SYSTEM

The author of this study compares

the performance of various machine

learning algorithms to find faults or defects

in software components, including SVM,

Bagging, Nave Bayes, Multinomial Nave

Bayes, RBF, Random Forest, and

Multilayer Perceptron Algorithms. Defects

in software components will emerge as a

result of bad coding, which will raise

software development and maintenance

costs, as well as customer dissatisfaction.

Various techniques have been developed

to detect faults in software components,

but machine learning algorithms are

currently getting a lot of traction due to

their superior performance. As a result, the

author of this research use machine

learning methods to detect faults in

software modules. The datasets CM1 and

KC1 are used in this paper by the author,

and they are from NASA Software

components. I'm also evaluating the

above-mentioned algorithms' performance

using the same datasets.

4.1 ALGORITHM DETAILS

SVM Algorithm: Machine learning

involves predicting and classifying data

and to do so we employ various machine

learning algorithms according to the

dataset. SVM or Support Vector Machine

is a linear model for classification and

regression problems. It can solve linear

and non-linear problems and work well for

many practical problems. The idea of

SVM is simple: The algorithm creates a

line or a hyper plane which separates the

data into classes. In machine learning, the

radial basis function kernel, or RBF kernel,

is a popular kernel function used in various

kernelized learning algorithms. In

particular, it is commonly used in support

vector machine classification. As a simple

example, for a classification task with only

two features (like the image above), you

can think of a hyper plane as a line that

linearly separates and classifies a set of

data. Intuitively, the further from the hyper

plane our data points lie, the more

confident we are that they have been

correctly classified. We therefore want our

data points to be as far away from the

hyper plane as possible, while still being

on the correct side of it.

Volume:13,Issue07,July2023 ISSN:2457-0362 Page 998

So when new testing data is added,

whatever side of the hyper plane it lands

will decide the class that we assign to it.

Random Forest Algorithm: it’s an

ensemble algorithm which means

internally it will use multiple classifier

algorithms to build accurate classifier

model. Internally this algorithm will use

decision tree algorithm to generate it train

model for classification.

Bagging: This algorithms work similar to

learning tree the only difference is voting

concept where each class will get majority

of votes based on values close to it and

that class will form a branch. If new values

arrived then that new value will applied on

entire tree to get close matching class.

Naive Bayes: Naive Bayes which is one of

the most commonly used algorithms for

classifying problems is simple

probabilistic classifier and is based on

Bayes Theorem. It determines the

probability of each features occurring in

each class and returns the outcome with

the highest probability.

Multinomial Naive Bayes: Multinomial

Naive Bayes classifier is obtained by

enlarging Naive Bayes classifier.

Differently from the Naive Bayes

classifier, a multinomial distribution is

used for each features.

Multilayer Perceptron: Multilayer

Perceptron which is one of the types of

Neural Networks comprises of one input

layer, one output layer and at least one or

more hidden layers. This algorithm

transfers the data from the input layer to

the output layer, which is called feed

forward. For training, the back propagation

technique is used. One hidden layer with

(attributes + classes) / 2 units are used for

this experiment. Each dataset has 22

attributes and 2 classes which are false and

true. We determined the learning rate as

0.3 and momentum as 0.2 for each dataset.

.

4.RESULTS AND DISCUSSION

Volume:13,Issue07,July2023 ISSN:2457-0362 Page 999

Fig 4.1 In above screen uploading ‘CM1.txt’ dataset and information of this dataset you

can read from internet of ‘DATASET_INFORMATION’ file from above screen. After

uploading dataset will get below screen

Fig 4.2 In above screen we can see multilayer perceptron fmeasure, recall and accuracy

values and scroll down in text area to see all details.

Volume:13,Issue07,July2023 ISSN:2457-0362 Page 1000

Fig 4.3 In above screen we can see multilayer perceptron accuracy is 93%. Similarly

you click on all other algorithms button to see their accuracies and then click on ‘All

Algorithms Accuracy Graph’ button to see all algorithms accuracy in graph to

understand which algorithm is giving high accuracy.

Fig 4.4 In above graph x-axis represents algorithm name and y-axis represents accuracy

of those algorithms. In all algorithms we can see MLP, Bagging is giving better

accuracy.

Volume:13,Issue07,July2023 ISSN:2457-0362 Page 1001

5.CONCLUSION

Seven machine learning algorithms are

used in this experimental study to predict

the defectiveness of software systems

before they are released to the real world

and/or delivered to customers, and the best

category with the most capability to

predict software defects is sought out by

comparing them using software quality

metrics such as accuracy, precision, recall,

and F-measure. PC1, CM1, KC1, and KC2

are the four NASA datasets used in this

experimental study. These datasets were

collected from the PROMISE repository,

which is open to the public. The results of

this experiment show that tree-structured

classifiers, also known as ensemble

learners, such as Random Forests and

Bagging, outperform their counterparts in

defect prediction. Especially, the capability

of Bagging in predicting software

defectiveness is better. When applied to all

datasets, the overall accuracy. In all

algorithms we can see MLP, Bagging is

giving better accuracy.

REFERENCES

[1] Victor R Basili, Lionel C. Briand, and

Walcelio L Melo. ´ A validation of object-

oriented design metrics as quality

indicators. IEEE Transactions on software

engineering, 22(10):751–761, 1996.

[2] Evren Ceylan, F Onur Kutlubay, and

Ayse B Bener. Software defect

identification using machine learning

techniques. In 32nd EUROMICRO

Conference on Software Engineering and

Advanced Applications

(EUROMICRO’06), pages 240–247.

IEEE, 2006.

[3] Karim O Elish and Mahmoud O Elish.

Predicting defect-prone software modules

using support vector machines. Journal of

Systems and Software, 81(5):649– 660,

2008.

[4] Norman Fenton, Paul Krause, and

Martin Neil. Software measurement:

Uncertainty and causal modeling. IEEE

software, 19(4):116–122, 2002.

[5] Lan Guo, Yan Ma, Bojan Cukic, and

Harshinder Singh. Robust prediction of

fault-proneness by random forests. In 15th

International Symposium on Software

Reliability Engineering, pages 417–428.

IEEE, 2004.

[6] Taghi M Khoshgoftaar, Edward B

Allen, and Jianyu Deng. Using regression

trees to classify fault-prone software

modules. IEEE Transactions on reliability,

51(4):455–462, 2002.

[7] Taghi M Khoshgoftaar, Edward B

Allen, John P Hudepohl, and Stephen J

Volume:13,Issue07,July2023 ISSN:2457-0362 Page 1002

Aud. Application of neural networks to

software quality modeling of a very large

telecommunications system. IEEE

Transactions on Neural Networks,

8(4):902–909, 1997.

[8] Sunghun Kim, Hongyu Zhang,

Rongxin Wu, and Liang Gong. Dealing

with noise in defect prediction. In 2011

33rd International Conference on Software

Engineering (ICSE), pages 481–490.

IEEE, 2011.

[9] Yan Ma, Lan Guo, and Bojan Cukic. A

statistical framework for the prediction of

fault-proneness. In Advances in Machine

Learning Applications in Software

Engineering, pages 237–263. IGI Global,

2007.

[10] Ruchika Malhotra. A systematic

review of machine learning techniques for

software fault prediction. Applied Soft

Computing, 27:504–518, 2015.

[11] Jinsheng Ren, Ke Qin, Ying Ma, and

Guangchun Luo. On software defect

prediction using machine learning. Journal

of Applied Mathematics, 2014, 2014.

[12] J. Sayyad Shirabad and T.J. Menzies.

The PROMISE Repository of Software

Engineering Databases. School of

Information Technology and Engineering,

University of Ottawa, Canada, 2005.

[13] Shuo Wang and Xin Yao. Using class

imbalance learning for software defect

prediction. IEEE Transactions on

Reliability, 62(2):434–443, 2013.

[14] Robert Andrew Weaver. The safety of

software: Constructing and assuring

arguments. University of York,

Department of Computer Science, 2003.

AUTHOR’S PROFILE

Ms. M. ANITHA completed her

Master of Computer Applications

and Masters of Technology.

Currently working as an Assistant

professor in the Department of

Masters of Computer Applications

in the SRK Institute of Technology,

Enikepadu, Vijayawada, NTR

District. Her area of interest includes

Machine Learning with Python and

DBMS.

Volume:13,Issue07,July2023 ISSN:2457-0362 Page 1003

Ms. L.MEGHANA is an MCA
student in the Department of Master
Of Computer Applications at SRK
Institute of Technology, Enikepadu,
Vijayawada, NTR District. She has
Completed Degree in
B.Sc.(computers) from Sri Durga
Malleswara Siddhartha Mahila
Kalasala Degree college
Vijayawada. Her areas of interest are
DBMS, Java Script, and Machine
Learning with Python.

	A Novel Machine Learning Approach for Estimation of Software Defects
	Abstract_ One of the most important components of software is its quality. Software designs are becoming more sophisticated as demand grows, increasing the likelihood of software failures. By repairing flaws, testers help to increase the quality of so...
	1.INTRODUCTION
	The software industry is rapidly evolving as a result of rising demand and technological advancements. Defects will eventually arise because the majority of software development is done by people. Defects are undesired or unacceptable deviations in so...
	2.LITERATURE SURVEY

