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Abstract: Coronary heart disease (CHD) is a critical 

cardiac condition that poses a severe health risk and 

unfortunately doesn't have a complete cure. Detecting 

coronary artery disease accurately and at an early stage 

is crucial for providing effective care to patients. Early 

detection allows for timely interventions and improved 

patient outcomes. The proposed "HY_OptGBM" 

model focuses on utilizing an optimized LightGBM 

classifier for predicting CHD. LightGBM is a 

powerful gradient boosting framework known for its 

efficiency and accuracy in predictive modeling. The 

LightGBM classifier is optimized by adjusting its 

hyperparameters and improving the loss function. This 

optimization process enhances the training of the 

model, making it more accurate and efficient. The 

model's performance is evaluated using data from the 

Framingham Heart Institute related to coronary heart 

disease. By utilizing this data, the model excels in 

predicting CHD, enabling early detection and 

potentially leading to reduced treatment costs by 

addressing the disease at its early stages. And also 

introduces a Voting Classifier (RF + AdaBoost) with 

an impressive 99% accuracy, enhancing the detection 

of Coronary Heart Disease (CHD). This ensemble 

model, combining Random Forest and AdaBoost, 

demonstrates robustness in distinguishing patterns 

related to CHD. To ensure practical usability, a user-

friendly Flask framework with SQLite integration is 

incorporated, simplifying signup and signin processes 

for user testing. This streamlined interface enhances 

accessibility, making the machine learning techniques 

more practical and user-friendly for various 

stakeholders involved in CHD detection. 

Index terms - Coronary heart disease, 

hyperparameter optimization, LightGBM, loss 

function, machine learning, OPTUNA. 

1. INTRODUCTION 

CHD is a prevalent cardiovascular disorder resulting 

from the buildup of atherosclerotic plaques in the 

coronary arteries, leading to a reduction in blood flow 

to the heart muscle. This condition presents a range of 

symptoms, including chest pain or angina, shortness of 

breath, palpitations, and heart failure. In severe cases, 

CHD may lead to a heart attack, which can result in 

permanent damage to the heart muscle and have a 

profound impact on an individual’s quality of life. 

Therefore, it is imperative to recognize and manage 
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CHD through appropriate medical intervention and 

lifestyle modifications [1]. 

Early detection of CHD can improve the cure 

probability and can decrease the cost of treatment. 

Numerous machine learning algorithms and data 

mining technologies have been widely used in the 

medical field [2], [3], [4], [5], [6] in recent years, 

owing to advancements in machine learning 

algorithms and a significant reduction in the cost of 

data storage. Data mining technology has become 

essential for healthcare data mining, such as disease 

diagnosis, auxiliary diagnosis, drug mining, and 

biomedicine. Through data mining technology, hidden 

knowledge about diseases can be extracted from large 

quantities of unstructured medical data, disease 

prediction models can be developed, and results can be 

analyzed.  

Health organizations face tremendous challenges in 

providing high-quality and affordable healthcare. A 

hospital provides quality healthcare services that 

require physicians to have comprehensive knowledge 

and a correct diagnosis for the patient to avoid wasting 

healthcare resources due to inaccurate diagnoses. Data 

mining technology can perform efficiently and can 

play a crucial role in clinical cases. The optimal 

hyperparameters [7], [8] for any classification 

algorithm significantly affect its performance. The 

accuracy of the classification algorithm can be 

improved by selecting the optimal set of 

hyperparameters. In this study, a state-of-theart 

hyperparameter optimization framework (OPTUNA) 

[9] was employed to obtain optimal hyperparameter 

values for the LightGBM model. Therefore, in this 

study, the most suitable set of hyperparameters was 

determined from the available hyperparameters. 

Hyperparametric optimization can be accomplished by 

different methods, such as random and grid searches. 

Another method is the OPTUNA hyperparametric 

search. Because the number of hyperparameters in the 

LightGBM significantly affects its performance, 

conventional random and grid search methods do not 

learn from the previous optimization, which wastes 

considerable time and is inefficient. The OPTUNA 

framework continuously learns from previous 

optimizations and adjusts the hyperparameters as 

necessary. Therefore, OPTUNA was chosen in this 

paper for hyperparameter optimization.  

The loss function also affects the model accuracy [10]. 

In this paper, the focal loss function was proposed 

based on the cross-entropy loss by adding the category 

weight α and the sample difficulty weight modulating 

factor γ . The aim of this study was to address the 

problem of unbalanced proportions of positive and 

negative samples. Additionally, the focal loss function 

can improve the overall performance of the model. In 

this study, the default loss function of the LightGBM 

[11] model was revised using the focal loss function 

and applied to predict CHD. 

2. LITERATURE SURVEY 

Overweight and obesity contribute to the development 

of cardiovascular disease (CVD) in general and 

coronary heart disease (CHD) in particular in part by 

their association with traditional and nontraditional 

CVD risk factors [1]. Obesity is also considered to be 

an independent risk factor for CVD. The metabolic 

syndrome, of which central obesity is an important 

component, is strongly associated with CVD including 

CHD. There is abundant epidemiologic evidence of an 

association between both overweight and obesity and 
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CHD [2], [3], [4], [5], [6]. Evidence from postmortem 

studies and studies involving coronary artery imaging 

is less persuasive. Recent studies suggest the presence 

of an obesity paradox with respect to mortality in 

persons with established CHD. Physical activity and 

preserved cardiorespiratory fitness attenuate the 

adverse effects of obesity on CVD events. Information 

concerning the effect of intentional weight loss on 

CVD outcomes in overweight and obese persons is 

limited. 

Machine learning (ML) is a burgeoning field of 

medicine with huge resources being applied to fuse 

computer science and statistics to medical problems. 

Proponents of ML extol its ability to deal with large, 

complex and disparate data, often found within 

medicine and feel that ML [12,13] is the future for 

biomedical research, personalized medicine, 

computer-aided diagnosis to significantly advance 

global health care. However, the concepts of ML are 

unfamiliar to many medical professionals and there is 

untapped potential in the use of ML as a research tool. 

In this article [2] , we provide an overview of the 

theory behind ML, explore the common ML 

algorithms used in medicine including their pitfalls 

and discuss the potential future of ML in medicine. 

The most common applications of artificial 

intelligence (AI) in drug treatment have to do with 

matching patients to their optimal drug or combination 

of drugs, predicting drug-target or drug-drug 

interactions, and optimizing treatment protocols. This 

review [3] outlines some of the recently developed AI 

methods aiding the drug treatment and administration 

process. Selection of the best drug(s) for a patient 

typically requires the integration of patient data, such 

as genetics or proteomics, with drug data, like 

compound chemical descriptors, to score the 

therapeutic efficacy of drugs. The prediction of drug 

interactions often relies on similarity metrics, 

assuming that drugs with similar structures or targets 

will have comparable behavior or may interfere with 

each other. Optimizing the dosage schedule for 

administration of drugs is performed using 

mathematical models to interpret pharmacokinetic and 

pharmacodynamic data. The recently developed and 

powerful models for each of these tasks are addressed, 

explained, and analyzed here [12]. 

The performance of a model in machine learning 

problems highly depends on the dataset and training 

algorithms. Choosing the right training algorithm can 

change the tale of a model. While some algorithms 

have a great performance in some datasets, they may 

fall into trouble in other datasets. Moreover, by 

adjusting hyperparameters of an algorithm, which 

controls the training processes, the performance can be 

improved. This study [7] contributes a method to tune 

hyperparameters of machine learning algorithms using 

Grey Wolf Optimization (GWO) and Genetic 

algorithm (GA) metaheuristics. Also, 11 different 

algorithms including Averaged Perceptron, FastTree, 

FastForest, Light Gradient Boost Machine (LGBM), 

Limited memory Broyden Fletcher Goldfarb Shanno 

algorithm Maximum Entropy (LbfgsMxEnt), Linear 

Support Vector Machine (LinearSVM), and a Deep 

Neural Network (DNN) including four architectures 

are employed on 11 datasets in different biological, 

biomedical, and nature categories such as molecular 

interactions, cancer, clinical diagnosis, behavior 

related predictions, RGB images of human skin, and 

X-rays images of Covid19 and cardiomegaly patients. 

Our results show that in all trials, the performance of 

the training phases is improved. Also, GWO 
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demonstrates a better performance with a p-value of 

2.6E-5. Moreover, in most experiment cases of this 

study, the metaheuristic methods demonstrate better 

performance and faster convergence than Exhaustive 

Grid Search (EGS). The proposed method just receives 

a dataset as an input and suggests the best-explored 

algorithm with related arguments. So, it is appropriate 

for datasets with unknown distribution, machine 

learning algorithms with complex behavior, or users 

who are not experts in analytical statistics and data 

science algorithms. 

Depending on excellent prediction ability, machine 

learning has been considered the most powerful 

implement to analyze high-throughput sequencing 

genome data. However, the sophisticated process of 

tuning hyperparameters tremendously impedes the 

wider application of machine learning in animal and 

plant breeding programs. Therefore, we integrated an 

automatic tuning hyperparameters algorithm, tree-

structured Parzen estimator (TPE), with machine 

learning to simplify the process of using machine 

learning for genomic prediction. In this study, we 

applied TPE to optimize the hyperparameters of 

Kernel ridge regression (KRR) and support vector 

regression (SVR) [8]. To evaluate the performance of 

TPE, we compared the prediction accuracy of KRR-

TPE and SVR-TPE with the genomic best linear 

unbiased prediction (GBLUP) and KRR-RS, KRR-

Grid, SVR-RS, and SVR-Grid, which tuned the 

hyperparameters of KRR and SVR by using random 

search (RS) and grid search (Gird) in a simulation 

dataset and the real datasets [47]. The results indicated 

that KRR-TPE achieved the most powerful prediction 

ability considering all populations and was the most 

convenient. Especially for the Chinese Simmental beef 

cattle and Loblolly pine populations, the prediction 

accuracy of KRR-TPE had an 8.73% and 6.08% 

average improvement compared with GBLUP, 

respectively. Our study will greatly promote the 

application of machine learning in GP and further 

accelerate breeding progress. 

3. METHODOLOGY 

i) Proposed Work: 

The proposed system aims to optimize a LightGBM 

model for predicting coronary heart disease, evaluate 

its performance, implement ensemble techniques, 

allow user input for prediction, and extend the system 

with a user-friendly frontend and authentication 

capabilities. Optimization and ensemble techniques 

improve accuracy, vital for reliable coronary heart 

disease prediction. Fine-tuning LightGBM ensures an 

effective predictive model with streamlined 

parameters and loss functions. The system's versatility 

extends its utility to diverse healthcare domains, 

showcasing adaptability and broader relevance 

[11,26]. And also introduces a Voting Classifier (RF + 

AdaBoost) with an impressive 99% accuracy, 

enhancing the detection of Coronary Heart Disease 

(CHD). This ensemble model, combining Random 

Forest and AdaBoost, demonstrates robustness in 

distinguishing patterns related to CHD. To ensure 

practical usability, a user-friendly Flask framework 

with SQLite integration is incorporated, simplifying 

signup and signin processes for user testing. This 

streamlined interface enhances accessibility, making 

the machine learning techniques more practical and 

user-friendly for various stakeholders involved in 

CHD detection [2], [3], [4], [5], [6]. 

ii) System Architecture: 
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When using machine learning models, the simpler the 

setup is, the better, especially for large-scale training 

and largescale datasets. All of the above make 

OPTUNA an excellent hyperparametric optimization 

framework. The architecture of the optimized 

LightGBM model is illustrated in Fig. 1. In Fig. 1, each 

worker performs an instance of the objective function 

during the search. 

 

Fig 1 Proposed architecture 

iii) Dataset collection: 

The dataset related to Framingham Heart Disease is 

loaded and explored to understand its structure, 

features, and content. The Framingham Heart Study 

(FHS) is dedicated to identifying common factors or 

characteristics that contribute to cardiovascular 

disease (CVD). In 1948, an original cohort of 5,209 

men and women between 30 and 62 years old were 

recruited from Framingham, MA. An Offspring 

Cohort began in 1971, an Omni Cohort in 1994, a 

Third Generation Cohort in 2002, a New Offspring 

Spouse Cohort in 2004 and a Second Generation Omni 

Cohort in 2003. Core research in the dataset focuses 

on cardiovascular and cerebrovascular diseases. The 

data include biological specimens, molecular genetic 

data, phenotype data, samples, images, participant 

vascular functioning data, physiological data, 

demographic data, and ECG data.It is a collaborative 

project of the National Heart, Lung and Blood Institute 

and Boston University. 

 

Fig 2 Framingham Heart Disease Data 

iv) Data Processing: 

Data processing involves transforming raw data into 

valuable information for businesses. Generally, data 

scientists process data, which includes collecting, 

organizing, cleaning, verifying, analyzing, and 

converting it into readable formats such as graphs or 

documents. Data processing can be done using three 

methods i.e., manual, mechanical, and electronic. The 

aim is to increase the value of information and 

facilitate decision-making. This enables businesses to 

improve their operations and make timely strategic 

decisions. Automated data processing solutions, such 

as computer software programming, play a significant 

role in this. It can help turn large amounts of data, 

including big data, into meaningful insights for quality 

management and decision-making. 

v) Feature selection: 

Feature selection is the process of isolating the most 

consistent, non-redundant, and relevant features to use 

in model construction. Methodically reducing the size 

of datasets is important as the size and variety of 

datasets continue to grow. The main goal of feature 
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selection is to improve the performance of a predictive 

model and reduce the computational cost of modeling. 

Feature selection, one of the main components of 

feature engineering, is the process of selecting the 

most important features to input in machine learning 

algorithms. Feature selection techniques are employed 

to reduce the number of input variables by eliminating 

redundant or irrelevant features and narrowing down 

the set of features to those most relevant to the 

machine learning model. The main benefits of 

performing feature selection in advance, rather than 

letting the machine learning model figure out which 

features are most important. 

vi) Algorithms: 

AdaBoost is an ensemble learning technique that 

combines weak learners (typically decision trees) to 

create a strong classifier. AdaBoost can be used to 

boost the performance of weak learners (e.g., decision 

trees) in the ensemble, improving the prediction 

accuracy of coronary heart disease [25]. 

 

Fig 3 Adaboost 

Decision Tree is a flowchart-like structure where an 

internal node represents a feature, the branch 

represents a decision rule, and each leaf node 

represents an outcome. Decision Trees were employed 

as base learners within ensemble methods like 

AdaBoost and Bagging to enhance the prediction of 

coronary heart disease [22]. 

 

Fig 4 Decision tree 

Bagging (Bootstrap Aggregating) involves creating 

multiple models using different subsets of the training 

dataset and averaging the predictions to improve 

model accuracy. Bagging was utilized to create an 

ensemble of models, enhancing prediction accuracy in 

the context of coronary heart disease prediction [26]. 

 

Fig 5 Bagging 
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Gradient Boosting builds strong predictive models by 

combining the predictions of weak models iteratively, 

minimizing a loss function. Gradient Boosting was 

used to create an ensemble of models, iteratively 

improving prediction accuracy for coronary heart 

disease [25]. 

 

Fig 6 Gradient boosting 

XGBoost (Extreme Gradient Boosting) is an efficient 

and scalable implementation of gradient boosting. 

XGBoost was used as a boosting algorithm to enhance 

prediction accuracy for coronary heart disease [25]. 

 

Fig 7 XGBoost 

CatBoost is a gradient boosting library designed to 

handle categorical features efficiently. It automatically 

deals with categorical data without the need for pre-

processing like one-hot encoding. CatBoost was used 

to handle the categorical features in the dataset, 

simplifying the modeling process and contributing to 

better predictions [24]. 

 

Fig 8 Catboost 

LightGBM is a gradient boosting framework, and 

Focal Loss is a modified loss function that addresses 

class imbalance by focusing on hard-to-classify 

samples. LightGBM with Focal Loss was utilized to 

improve sensitivity to predicting coronary heart 

disease, especially in the presence of imbalanced data, 

by putting more emphasis on difficult cases. 

 

Fig 9 Light GBM 

This refers to using LightGBM without the Focal Loss 

function, using its standard loss functions instead. 

LightGBM without Focal Loss was used as a baseline 

to compare and evaluate the impact of Focal Loss on 

the prediction performance for coronary heart disease. 
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Fig 10 LightGBM without Focal Loss 

A Voting Classifier is an ensemble method that 

aggregates the predictions from multiple individual 

models and predicts the class label based on the 

majority vote. In this project, a Voting Classifier was 

employed with a combination of Random Forest (RF) 

and AdaBoost models to harness the strengths of both 

models, aiming for improved prediction accuracy in 

coronary heart disease prediction. 

 

Fig 11 Voting classifier 

4. EXPERIMENTAL RESULTS 

Precision: Precision evaluates the fraction of correctly 

classified instances or samples among the ones 

classified as positives. Thus, the formula to calculate 

the precision is given by: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 

 

 

Fig 6 Precision comparison graph 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all relevant 

instances of a particular class. It is the ratio of correctly 

predicted positive observations to the total actual 

positives, providing insights into a model's 

completeness in capturing instances of a given class. 

 

 

Fig 7  Recall comparison graph 
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Accuracy: Accuracy is the proportion of correct 

predictions in a classification task, measuring the 

overall correctness of a model's predictions. 

 

 

Fig 8 Accuracy graph 

F1 Score: The F1 Score is the harmonic mean of 

precision and recall, offering a balanced measure that 

considers both false positives and false negatives, 

making it suitable for imbalanced datasets. 

 

 

Fig 9 F1Score 

 

Fig 10 Performance Evaluation  

 

Fig 11 Home page 

 

Fig 12 Signin page 
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Fig 13 Login page 

 

Fig 14 User input 

 

Fig 15 Predict result for given input 

5. CONCLUSION 

The HY_OptGBM prediction model, incorporating an 

optimized LightGBM classifier and a refined loss 

function, showcases impressive accuracy in predicting 

coronary heart disease (CHD). The model's evaluation 
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includes comprehensive metrics such as precision, 

recall, F score, and accuracy, providing a thorough 

assessment of its predictive capabilities. Optimization 

efforts focus on enhancing the HY_OptGBM model 

through the application of advanced classifier 

techniques and refined loss functions. These 

refinements contribute to the model's ability to provide 

accurate predictions and improve its overall 

performance in CHD detection [2], [3], [4], [5], [6]. It 

includes, an ensemble method is applied to combine 

predictions from multiple models, further enhancing 

the system's accuracy and robustness. The exploration 

of advanced ensemble techniques, such as the Voting 

Classifier, yields an impressive 99% accuracy, 

demonstrating the efficacy of combining diverse 

models for improved predictive performance. The 

integration of a user-friendly Flask interface with 

secure authentication enhances the overall user 

experience during system testing. This interface 

allows for seamless input of data to evaluate the 

system's performance, ensuring practical usability and 

security in the evaluation process. 

6. FUTURE SCOPE 

Future research can focus on incorporating more 

features or diverse data sources to enhance the 

accuracy of the HY_OptGBM model in predicting 

coronary heart disease. This may involve integrating 

relevant medical data for a comprehensive 

understanding. To validate the model's 

generalizability and robustness, further research 

should involve evaluating its performance on larger 

and more diverse datasets. This will provide insights 

into how well the model can adapt to varying data 

distributions. Conducting comparative studies against 

other advanced machine learning models [12,13] for 

CHD prediction can help ascertain the HY_OptGBM 

model's effectiveness and superiority, fostering a 

deeper understanding of its capabilities. The proposed 

method's applicability can be broadened by extending 

it to predict not only coronary heart disease but also 

other cardiovascular diseases or related conditions. 

This expansion can significantly impact the field of 

cardiology, providing a versatile predictive tool. 
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